Difference between revisions of "2016 AMC 10B Problems/Problem 18"
Coltsfan10 (talk | contribs) m (→Solution 2.1) |
|||
Line 32: | Line 32: | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2016|ab=B|num-b=17|num-a=19}} | {{AMC10 box|year=2016|ab=B|num-b=17|num-a=19}} | ||
+ | |||
+ | [[Category:Introductory Number Theory Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 19:43, 13 September 2020
Contents
[hide]Problem
In how many ways can be written as the sum of an increasing sequence of two or more consecutive positive integers?
Solution 1
Factor .
Suppose we take an odd number of consecutive integers, with the median as . Then with . Looking at the factors of , the possible values of are with medians as respectively.
Suppose instead we take an even number of consecutive integers, with median being the average of and . Then with . Looking again at the factors of , the possible values of are with medians respectively.
Thus the answer is .
Solution 2
We need to find consecutive numbers (an arithmetic sequence that increases by ) that sums to . This calls for the sum of an arithmetic sequence given that the first term is , the last term is and with elements, which is: .
So, since it is a sequence of consecutive numbers starting at and ending at . We can now substitute with . Now we substiute our new value of into to get that the sum is .
This simplifies to . This gives a nice equation. We multiply out the 2 to get that . This leaves us with 2 integers that multiplies to which leads us to think of factors of . We know the factors of are: . So through inspection (checking), we see that only and work. This gives us the answer of ways.
~~jk23541
Solution 2.1
At the very end of Solution 2, where we find the factors of 690, instead of inspection, notice that all numbers will work until you get to , and that is because , which means and must be the middle 2 numbers; however, a sequence of length with middle numbers and that consists only of integers would go into the negatives, so any number from 30 onwards wouldn't work, and since is a trivial, non-counted solution, we get -ColtsFan10
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.