Difference between revisions of "2011 AMC 8 Problems/Problem 22"
(→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | What is the | + | What is the tens digit of <math>7^{2011}</math>? |
− | <math> \textbf{(A) } | + | <math> \textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }7 </math> |
==Video Solution== | ==Video Solution== |
Revision as of 23:48, 3 November 2020
Problem
What is the tens digit of ?
Video Solution
https://youtu.be/7an5wU9Q5hk?t=1710
Solution 1
We want the tens digit So, we take . That is congruent to . From here, it is an easy bash, 7, 49, 43, 01, 07, 49, 43, 01, 07, 49, 43. So the answer is
Solution 2
Since we want the tens digit, we can find the last two digits of . We can do this by using modular arithmetic. We can write as . Using this, we can say: From the above, we can conclude that the last two digits of are 43. Since they have asked us to find the tens digit, our answer is . ~marfu2007
See Also
2011 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.