Difference between revisions of "1977 AHSME Problems"

m
(Problem 6: Missing exponent -1)
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{{AHSME Problems
 +
|year = 1977
 +
}}
 
== Problem 1 ==
 
== Problem 1 ==
  
Line 26: Line 29:
 
== Problem 3 ==
 
== Problem 3 ==
  
A man has $2.73 in pennies, nickels, dimes, quarters and half dollars. If he has an equal number of coins of each kind, then the total number of coins he has is  
+
A man has $2.73 in pennies, nickels, dimes, quarters and half dollars. If he has an equal number of coins of each kind, then the total number of coins he has is  
  
 
<math>\text{(A)}\ 3 \qquad  
 
<math>\text{(A)}\ 3 \qquad  
Line 79: Line 82:
  
 
If <math>x, y</math> and <math>2x + \frac{y}{2}</math> are not zero, then
 
If <math>x, y</math> and <math>2x + \frac{y}{2}</math> are not zero, then
<math>\left( 2x + \frac{y}{2} \right)\left[(2x)^{-1} + \left( \frac{y}{2} \right)^{-1} \right]</math>
+
<math>\left( 2x + \frac{y}{2} \right)^{-1} \left[(2x)^{-1} + \left( \frac{y}{2} \right)^{-1} \right]</math>
 
equals
 
equals
  
Line 330: Line 333:
 
== Problem 21 ==
 
== Problem 21 ==
  
For how many values of the coefficient a do the equations <math>x2+ax+1=0x2xa=0</math> have a common real solution?
+
For how many values of the coefficient a do the equations <cmath>x2+ax+1=0x2xa=0</cmath> have a common real solution?
  
 
<math>\textbf{(A)}\ 0 \qquad
 
<math>\textbf{(A)}\ 0 \qquad
Line 472: Line 475:
  
 
== See also ==
 
== See also ==
* [[AHSME]]
+
 
* [[AHSME Problems and Solutions]]
 
 
* [[AMC 12 Problems and Solutions]]
 
* [[AMC 12 Problems and Solutions]]
 
* [[Mathematics competition resources]]
 
* [[Mathematics competition resources]]
 +
 +
{{AHSME box|year=1977|before=[[1976 AHSME]]|after=[[1978 AHSME]]}} 
 +
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 04:09, 27 November 2020

1977 AHSME (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 30-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 5 points for each correct answer, 2 points for each problem left unanswered, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have 90 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Problem 1

If $y = 2x$ and $z = 2y$, then $x + y + z$ equals

$\text{(A)}\ x \qquad  \text{(B)}\ 3x \qquad  \text{(C)}\ 5x \qquad  \text{(D)}\ 7x \qquad  \text{(E)}\ 9x$

Solution

Problem 2

Which one of the following statements is false? All equilateral triangles are

$\textbf{(A)}\ \text{ equiangular}\qquad \textbf{(B)}\ \text{isosceles}\qquad \textbf{(C)}\ \text{regular polygons }\qquad\\ \textbf{(D)}\ \text{congruent to each other}\qquad \textbf{(E)}\ \text{similar to each other}$


Solution

Problem 3

A man has $2.73 in pennies, nickels, dimes, quarters and half dollars. If he has an equal number of coins of each kind, then the total number of coins he has is

$\text{(A)}\ 3 \qquad  \text{(B)}\ 5 \qquad  \text{(C)}\ 9 \qquad  \text{(D)}\ 10 \qquad  \text{(E)}\ 15$

Solution

Problem 4

[asy] size(130); pair A = (2, 2.4), C = (0, 0), B = (4.3, 0),  E = 0.7*A, F = 0.57*A + 0.43*B, D = (2.4, 0); draw(A--B--C--cycle); draw(E--D--F); label("$A$", A, N); label("$B$", B, E); label("$C$", C, W); label("$D$", D, S); label("$E$", E, NW); label("$F$", F, NE); //Credit to MSTang for the diagram [/asy]

In triangle $ABC, AB=AC$ and $\measuredangle A=80^\circ$. If points $D, E$, and $F$ lie on sides $BC, AC$ and $AB$, respectively, and $CE=CD$ and $BF=BD$, then $\measuredangle EDF$ equals

$\textbf{(A) }30^\circ\qquad \textbf{(B) }40^\circ\qquad \textbf{(C) }50^\circ\qquad \textbf{(D) }65^\circ\qquad \textbf{(E) }\text{none of these}$

Solution

Problem 5

The set of all points $P$ such that the sum of the (undirected) distances from $P$ to two fixed points $A$ and $B$ equals the distance between $A$ and $B$ is

$\textbf{(A) }\text{the line segment from }A\text{ to }B\qquad \textbf{(B) }\text{the line passing through }A\text{ and }B\qquad\\ \textbf{(C) }\text{the perpendicular bisector of the line segment from }A\text{ to }B\qquad\\ \textbf{(D) }\text{an ellipse having positive area}\qquad \textbf{(E) }\text{a parabola}$


Solution

Problem 6

If $x, y$ and $2x + \frac{y}{2}$ are not zero, then $\left( 2x + \frac{y}{2} \right)^{-1} \left[(2x)^{-1} + \left( \frac{y}{2} \right)^{-1} \right]$ equals

$\textbf{(A) }1\qquad \textbf{(B) }xy^{-1}\qquad \textbf{(C) }x^{-1}y\qquad \textbf{(D) }(xy)^{-1}\qquad  \textbf{(E) }\text{none of these}$


Solution

Problem 7

If $t = \frac{1}{1 - \sqrt[4]{2}}$, then $t$ equals

$\text{(A)}\ (1-\sqrt[4]{2})(2-\sqrt{2})\qquad \text{(B)}\ (1-\sqrt[4]{2})(1+\sqrt{2})\qquad \text{(C)}\ (1+\sqrt[4]{2})(1-\sqrt{2}) \qquad \\ \text{(D)}\ (1+\sqrt[4]{2})(1+\sqrt{2})\qquad \text{(E)}-(1+\sqrt[4]{2})(1+\sqrt{2})$


Solution

Problem 8

For every triple $(a,b,c)$ of non-zero real numbers, form the number $\frac{a}{|a|}+\frac{b}{|b|}+\frac{c}{|c|}+\frac{abc}{|abc|}$. The set of all numbers formed is

$\textbf{(A)}\ {0} \qquad \textbf{(B)}\ \{-4,0,4\} \qquad \textbf{(C)}\ \{-4,-2,0,2,4\} \qquad \textbf{(D)}\ \{-4,-2,2,4\}\qquad \textbf{(E)}\ \text{none of these}$


Solution

Problem 9

[asy] size(120); path c = Circle((0, 0), 1); pair A = dir(20), B = dir(130), C = dir(240), D = dir(330); draw(c); pair F = 3(A-B) + B; pair G = 3(D-C) + C; pair E = intersectionpoints(B--F, C--G)[0]; draw(B--E--C--A); label("$A$", A, NE); label("$B$", B, NW); label("$C$", C, SW); label("$D$", D, SE); label("$E$", E, E); //Credit to MSTang for the diagram [/asy]


In the adjoining figure $\measuredangle E=40^\circ$ and arc $AB$, arc $BC$, and arc $CD$ all have equal length. Find the measure of $\measuredangle ACD$.

$\textbf{(A) }10^\circ\qquad \textbf{(B) }15^\circ\qquad \textbf{(C) }20^\circ\qquad \textbf{(D) }\left(\frac{45}{2}\right)^\circ\qquad \textbf{(E) }30^\circ$


Solution

Problem 10

If $(3x-1)^7 = a_7x^7 + a_6x^6 + \cdots + a_0$, then $a_7 + a_6 + \cdots + a_0$ equals

$\text{(A)}\ 0 \qquad  \text{(B)}\ 1 \qquad  \text{(C)}\ 64 \qquad  \text{(D)}\ -64 \qquad  \text{(E)}\ 128$


Solution

Problem 11

For each real number $x$, let $\textbf{[}x\textbf{]}$ be the largest integer not exceeding $x$ (i.e., the integer $n$ such that $n\le x<n+1$). Which of the following statements is (are) true?

$\textbf{I. [}x+1\textbf{]}=\textbf{[}x\textbf{]}+1\text{ for all }x \\ \textbf{II. [}x+y\textbf{]}=\textbf{[}x\textbf{]}+\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y \\ \textbf{III. [}xy\textbf{]}=\textbf{[}x\textbf{]}\textbf{[}y\textbf{]}\text{ for all }x\text{ and }y$


$\textbf{(A) }\text{none}\qquad \textbf{(B) }\textbf{I }\text{only}\qquad \textbf{(C) }\textbf{I}\text{ and }\textbf{II}\text{ only}\qquad \textbf{(D) }\textbf{III }\text{only}\qquad \textbf{(E) }\text{all}$


Solution

Problem 12

Al's age is $16$ more than the sum of Bob's age and Carl's age, and the square of Al's age is $1632$ more than the square of the sum of Bob's age and Carl's age. What is the sum of the ages of Al, Bob, and Carl?

$\text{(A)}\ 64 \qquad  \text{(B)}\ 94 \qquad  \text{(C)}\ 96 \qquad  \text{(D)}\ 102 \qquad  \text{(E)}\ 140$

Solution

Problem 13

If $a_1,a_2,a_3,\dots$ is a sequence of positive numbers such that $a_{n+2}=a_na_{n+1}$ for all positive integers $n$, then the sequence $a_1,a_2,a_3,\dots$ is a geometric progression

$\textbf{(A) }\text{for all positive values of }a_1\text{ and }a_2\qquad\\ \textbf{(B) }\text{if and only if }a_1=a_2\qquad\\ \textbf{(C) }\text{if and only if }a_1=1\qquad\\ \textbf{(D) }\text{if and only if }a_2=1\qquad\\ \textbf{(E) }\text{if and only if }a_1=a_2=1$


Solution

Problem 14

How many pairs $(m,n)$ of integers satisfy the equation $m+n=mn$?

$\textbf{(A) }1\qquad \textbf{(B) }2\qquad \textbf{(C) }3\qquad \textbf{(D) }4\qquad  \textbf{(E) }\text{more than }4$


Solution

Problem 15

[asy] size(120); real t = 2/sqrt(3); real x = 1 + sqrt(3); pair A = t*dir(90), D = x*A; pair B = t*dir(210), E = x*B; pair C = t*dir(330), F = x*C; draw(D--E--F--cycle); draw(Circle(A, 1)); draw(Circle(B, 1)); draw(Circle(C, 1)); //Credit to MSTang for the diagram [/asy]

Each of the three circles in the adjoining figure is externally tangent to the other two, and each side of the triangle is tangent to two of the circles. If each circle has radius three, then the perimeter of the triangle is

$\textbf{(A) }36+9\sqrt{2}\qquad \textbf{(B) }36+6\sqrt{3}\qquad \textbf{(C) }36+9\sqrt{3}\qquad \textbf{(D) }18+18\sqrt{3}\qquad \textbf{(E) }45$


Solution

Problem 16

If $i^2 = -1$, then the sum \[\cos{45^\circ} + i\cos{135^\circ} + \cdots + i^n\cos{(45 + 90n)^\circ}  + \cdots + i^{40}\cos{3645^\circ}\] equals

$\text{(A)}\ \frac{\sqrt{2}}{2} \qquad  \text{(B)}\ -10i\sqrt{2} \qquad  \text{(C)}\ \frac{21\sqrt{2}}{2} \qquad\\ \text{(D)}\ \frac{\sqrt{2}}{2}(21 - 20i) \qquad  \text{(E)}\ \frac{\sqrt{2}}{2}(21 + 20i)$


Solution

Problem 17

Three fair dice are tossed at random (i.e., all faces have the same probability of coming up). What is the probability that the three numbers turned up can be arranged to form an arithmetic progression with common difference one?

$\textbf{(A) }\frac{1}{6}\qquad \textbf{(B) }\frac{1}{9}\qquad \textbf{(C) }\frac{1}{27}\qquad \textbf{(D) }\frac{1}{54}\qquad \textbf{(E) }\frac{7}{36}$


Solution

Problem 18

If $y=(\log_23)(\log_34)\cdots(\log_n[n+1])\cdots(\log_{31}32)$ then

$\textbf{(A) }4<y<5\qquad \textbf{(B) }y=5\qquad \textbf{(C) }5<y<6\qquad \textbf{(D) }y=6\qquad \\ \textbf{(E) }6<y<7$


Solution

Problem 19

Let $E$ be the point of intersection of the diagonals of convex quadrilateral $ABCD$, and let $P,Q,R$, and $S$ be the centers of the circles circumscribing triangles $ABE, BCE, CDE$, and $ADE$, respectively. Then

$\textbf{(A) }PQRS\text{ is a parallelogram}\\ \textbf{(B) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rhombus}\\ \textbf{(C) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a rectangle}\\ \textbf{(D) }PQRS\text{ is a parallelogram if an only if }ABCD\text{ is a parallelogram}\\ \textbf{(E) }\text{none of the above are true}$


Solution

Problem 20

$\begin{tabular}{ccccccccccccc}& & & & & & C & & & & & &\\  & & & & & C & O & C & & & & &\\  & & & & C & O & N & O & C & & & &\\  & & & C & O & N & T & N & O & C & & &\\  & & C & O & N & T & E & T & N & O & C & &\\  & C & O & N & T & E & S & E & T & N & O & C &\\  C & O & N & T & E & S & T & S & E & T & N & O & C \end{tabular}$


For how many paths consisting of a sequence of horizontal and/or vertical line segments, with each segment connecting a pair of adjacent letters in the diagram above, is the word CONTEST spelled out as the path is traversed from beginning to end?

$\textbf{(A) }63\qquad \textbf{(B) }128\qquad \textbf{(C) }129\qquad \textbf{(D) }255\qquad  \textbf{(E) }\text{none of these}$


Solution

Problem 21

For how many values of the coefficient a do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \infty$


Solution

Problem 22

If $f(x)$ is a real valued function of the real variable $x$, and $f(x)$ is not identically zero, and for all $a$ and $b$ $f(a+b)+f(a-b)=2f(a)+2f(b)$, then for all $x$ and $y$

$\textbf{(A) }f(0)=1\qquad \textbf{(B) }f(-x)=-f(x)\qquad \textbf{(C) }f(-x)=f(x)\qquad \\ \textbf{(D) }f(x+y)=f(x)+f(y) \qquad \\ \textbf{(E) }\text{there is a positive real number }T\text{ such that }f(x+T)=f(x)$


Solution

Problem 23

If the solutions of the equation $x^2+px+q=0$ are the cubes of the solutions of the equation $x^2+mx+n=0$, then

$\textbf{(A) }p=m^3+3mn\qquad \textbf{(B) }p=m^3-3mn\qquad \textbf{(C) }p+q=m^3\qquad\\ \textbf{(D) }\left(\frac{m}{n}\right)^2=\frac{p}{q}\qquad  \textbf{(E) }\text{none of these}$


Solution

Problem 24

Find the sum $\frac{1}{1(3)}+\frac{1}{3(5)}+\dots+\frac{1}{(2n-1)(2n+1)}+\dots+\frac{1}{255(257)}$.

$\textbf{(A) }\frac{127}{255}\qquad \textbf{(B) }\frac{128}{255}\qquad \textbf{(C) }\frac{1}{2}\qquad \textbf{(D) }\frac{128}{257}\qquad \textbf{(E) }\frac{129}{257}$


Solution

Problem 25

Determine the largest positive integer n such that $1005!$ is divisible by $10^n$.

$\textbf{(A) }102\qquad \textbf{(B) }112\qquad \textbf{(C) }249\qquad \textbf{(D) }502\qquad  \textbf{(E) }\text{none of these}$


Solution

Problem 26

Let $a,b,c$, and $d$ be the lengths of sides $MN,NP,PQ$, and $QM$, respectively, of quadrilateral $MNPQ$. If $A$ is the area of $MNPQ$, then

$\textbf{(A) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is convex}\\ \textbf{(B) }A=\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}\\ \textbf{(C) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a rectangle}\\ \textbf{(D) }A\le\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}\\ \textbf{(E) }A\ge\left(\frac{a+c}{2}\right)\left(\frac{b+d}{2}\right)\text{ if and only if }MNPQ\text{ is a parallelogram}$


Solution

Problem 27

There are two spherical balls of different sizes lying in two corners of a rectangular room, each touching two walls and the floor. If there is a point on each ball which is $5$ inches from each wall which that ball touches and $10$ inches from the floor, then the sum of the diameters of the balls is

$\textbf{(A) }20\text{ inches}\qquad \textbf{(B) }30\text{ inches}\qquad \textbf{(C) }40\text{ inches}\qquad \textbf{(D) }60\text{ inches}\qquad \\ \textbf{(E) }\text{not determined by the given information}$

Solution

Problem 28

Let $g(x)=x^5+x^4+x^3+x^2+x+1$. What is the remainder when the polynomial $g(x^{12})$ is divided by the polynomial $g(x)$?

$\textbf{(A) }6\qquad \textbf{(B) }5-x\qquad \textbf{(C) }4-x+x^2\qquad \textbf{(D) }3-x+x^2-x^3\qquad \\ \textbf{(E) }2-x+x^2-x^3+x^4$

Solution

Problem 29

Find the smallest integer $n$ such that $(x^2+y^2+z^2)^2\le n(x^4+y^4+z^4)$ for all real numbers $x,y$, and $z$.

$\textbf{(A) }2\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }6\qquad  \textbf{(E) }\text{There is no such integer n}$

Solution

Problem 30

[asy] for (int i=0; i<9; ++i) { draw(dir(10+40*i)--dir(50+40*i)); } draw(dir(50) -- dir(90)); label("$a$", dir(50) -- dir(90), N); draw(dir(10) -- dir(90)); label("$b$", dir(10) -- dir(90), SW); draw(dir(-70) -- dir(90)); label("$d$", dir(-70) -- dir(90), E); //Credit to MSTang for the diagram [/asy]

If $a,b$, and $d$ are the lengths of a side, a shortest diagonal and a longest diagonal, respectively, of a regular nonagon (see adjoining figure), then

$\textbf{(A) }d=a+b\qquad \textbf{(B) }d^2=a^2+b^2\qquad \textbf{(C) }d^2=a^2+ab+b^2\qquad\\ \textbf{(D) }b=\frac{a+d}{2}\qquad  \textbf{(E) }b^2=ad$

Solution

See also

1977 AHSME (ProblemsAnswer KeyResources)
Preceded by
1976 AHSME
Followed by
1978 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png