|
|
(13 intermediate revisions by 10 users not shown) |
Line 1: |
Line 1: |
| == Problem == | | == Problem == |
| | | |
− | Let <math>P(z) = z^8 + \left(4\sqrt{3} + 6\right)z^4 - \left(4\sqrt{3} + 7\right)</math>. What is the minimum perimeter amont all the <math>8</math>-sided polygons in the complex plane whose vertices are precisely the zeros of <math>P(z)</math>? | + | Let <math>P(z) = z^8 + \left(4\sqrt{3} + 6\right)z^4 - \left(4\sqrt{3} + 7\right)</math>. What is the minimum perimeter among all the <math>8</math>-sided polygons in the complex plane whose vertices are precisely the zeros of <math>P(z)</math>? |
| | | |
− | <math>\textbf{(A)}\ 4\sqrt{3} + 4 \qquad \textbf{(B)}\ 8\sqrt{2} \qquad \textbf{(C)}\ 3\sqrt{2} + 3\sqrt{6}</math> | + | <math>\textbf{(A)}\ 4\sqrt{3} + 4 \qquad \textbf{(B)}\ 8\sqrt{2} \qquad \textbf{(C)}\ 3\sqrt{2} + 3\sqrt{6} \qquad \textbf{(D)}\ 4\sqrt{2} + 4\sqrt{3} \qquad \textbf{(E)}\ 4\sqrt{3} + 6</math> |
− | | |
− | <math>\textbf{(D)}\ 4\sqrt{2} + 4\sqrt{3} \qquad \textbf{(E)}\ 4\sqrt{3} + 6</math>
| |
| | | |
| == Solution == | | == Solution == |
Line 15: |
Line 13: |
| <math>P(z) = \left(z^4 - 1\right)\left(z^4 + \left(4\sqrt{3} + 7\right)\right)</math> | | <math>P(z) = \left(z^4 - 1\right)\left(z^4 + \left(4\sqrt{3} + 7\right)\right)</math> |
| | | |
− | So <math>z^4 = 1</math> or <math>z = e^{i\frac{n\pi}{2}}</math> | + | So <math>z^4 = 1 \implies z = e^{i\frac{n\pi}{2}}</math> |
| | | |
| or <math>z^4 = - \left(4\sqrt{3} + 7\right)</math> | | or <math>z^4 = - \left(4\sqrt{3} + 7\right)</math> |
Line 25: |
Line 23: |
| <br /> | | <br /> |
| | | |
− | Now we have a solution at <math>\frac{n\pi}{4}</math> if we look at them in polar coordinate, further more, the 8-gon is symmetric (it is a regular octagon) . So we only need to find the side length of one and multiply by <math>8</math>. | + | Now we have a solution at <math>\frac{n\pi}{4}</math> if we look at them in polar coordinate, further more, the 8-gon is symmetric (it is an equilateral octagon) . So we only need to find the side length of one and multiply by <math>8</math>. |
| | | |
| So answer <math>= 8 \times</math> distance from <math>1</math> to <math>\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)\left(1 + i\right)</math> | | So answer <math>= 8 \times</math> distance from <math>1</math> to <math>\left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right)\left(1 + i\right)</math> |
Line 32: |
Line 30: |
| | | |
| Hence, answer is <math>8\sqrt{2}</math>. | | Hence, answer is <math>8\sqrt{2}</math>. |
− | <cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath><cmath></cmath>$ | + | |
| + | == Solution 2 == |
| + | |
| + | Use the law of cosines. |
| + | We make <math>a</math> the distance. |
| + | Now, since the angle does not change the distance from the origin, we can just use the distance. <math>a^2 = (\frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}})^2 + 1^2 -2 \times \Big( \frac{\sqrt{3}}{\sqrt{2}} + \frac{1}{\sqrt{2}} \Big)\times 1 \times \cos \frac{\pi}{4}</math>, which simplifies to <math>a^2= 2 + \sqrt3 +1 - 1 - \sqrt3</math>, or <math>a^2=2</math>, or <math>a=\sqrt2</math>. |
| + | Multiply the answer by 8 to get <math>\boxed{ (B) 8\sqrt2}</math> |
| | | |
| == See also == | | == See also == |
| {{AMC12 box|year=2011|num-b=23|num-a=25|ab=B}} | | {{AMC12 box|year=2011|num-b=23|num-a=25|ab=B}} |
| + | {{MAA Notice}} |
Latest revision as of 17:12, 22 August 2021