Difference between revisions of "2016 AMC 10B Problems/Problem 19"
Isabelchen (talk | contribs) |
Isabelchen (talk | contribs) |
||
Line 141: | Line 141: | ||
<cmath>[AEG]=4\cdot 3\cdot \frac{1}{2}=6</cmath> | <cmath>[AEG]=4\cdot 3\cdot \frac{1}{2}=6</cmath> | ||
<cmath>[AFG]=[ABCD]-[ADF]-[CFG]-[ABG]=20-4-\frac{3}{2}-\frac{15}{2}=7</cmath> | <cmath>[AFG]=[ABCD]-[ADF]-[CFG]-[ABG]=20-4-\frac{3}{2}-\frac{15}{2}=7</cmath> | ||
− | Because <math>\triangle AEG</math> and <math>\triangle AFG</math> share the same base <math>AG</math>, the ratio <math>\frac{[AEG]}{[AFG]}</math> is equal to the ratio of the altitudes of <math>\triangle AEG</math> and <math>\triangle AFG</math> to <math>AG</math>, which is | + | Because <math>\triangle AEG</math> and <math>\triangle AFG</math> share the same base <math>AG</math>, the ratio <math>\frac{[AEG]}{[AFG]}</math> is equal to the ratio of the altitudes of <math>\triangle AEG</math> and <math>\triangle AFG</math> to <math>AG</math>, which is equal to <math>\frac{EQ}{QF}</math>: |
<cmath>\frac{[AEG]}{[AFG]}=\frac{EQ}{QF}=\frac{6}{7}</cmath> | <cmath>\frac{[AEG]}{[AFG]}=\frac{EQ}{QF}=\frac{6}{7}</cmath> | ||
<cmath>\frac{EQ}{EF}=\frac{6}{13}</cmath> | <cmath>\frac{EQ}{EF}=\frac{6}{13}</cmath> | ||
Line 147: | Line 147: | ||
<cmath>\frac{PQ}{EF}=\frac{EP}{EF}-\frac{EQ}{EF}=\frac{4}{7}-\frac{6}{13}=\frac{10}{91}</cmath> | <cmath>\frac{PQ}{EF}=\frac{EP}{EF}-\frac{EQ}{EF}=\frac{4}{7}-\frac{6}{13}=\frac{10}{91}</cmath> | ||
<cmath>\frac{PQ}{EF}=\boxed{\textbf{(D)}~\frac{10}{91}}</cmath> | <cmath>\frac{PQ}{EF}=\boxed{\textbf{(D)}~\frac{10}{91}}</cmath> | ||
+ | |||
+ | ~isabelchen | ||
+ | |||
+ | ==Solution 5== | ||
+ | |||
+ | <asy>pair A1=(2,0),A2=(4,4); | ||
+ | pair B1=(0,4),B2=(5,1),B3=(20/7,12/7); | ||
+ | pair C1=(5,0),C2=(0,4); | ||
+ | draw(A1--A2); | ||
+ | draw(B1--B2); | ||
+ | draw(C1--C2); | ||
+ | draw(A2--B2); | ||
+ | draw(B2--B3); | ||
+ | draw((0,0)--B1--(5,4)--C1--cycle); | ||
+ | dot((20/7,12/7)); | ||
+ | dot((3.07692307692,2.15384615384)); | ||
+ | label("$Q$",(3.07692307692,2.15384615384),N); | ||
+ | label("$P$",(20/7,12/7),W); | ||
+ | label("$A$",(0,4), NW); | ||
+ | label("$B$",(5,4), NE); | ||
+ | label("$C$",(5,0),SE); | ||
+ | label("$D$",(0,0),SW); | ||
+ | label("$F$",(2,0),S); label("$G$",(5,1),E); | ||
+ | label("$E$",(4,4),N);</asy> | ||
~isabelchen | ~isabelchen |
Revision as of 09:58, 8 October 2021
Contents
[hide]Problem
Rectangle has and . Point lies on so that , point lies on so that , and point lies on so that . Segments and intersect at and , respectively. What is the value of ?
Solution 1 (Coordinate Geometry)
First, we will define point as the origin. Then, we will find the equations of the following three lines: , , and . The slopes of these lines are , , and , respectively. Next, we will find the equations of , , and . They are as follows: After drawing in altitudes to from , , and , we see that because of similar triangles, and so we only need to find the x-coordinates of and . Finding the intersections of and , and and gives the x-coordinates of and to be and . This means that . Now we can find
Solution 2 (Similar Triangles)
Extend to intersect at . Letting , we have that
Then, notice that and . Thus, we see that and Thus, we see that
Solution 3 (Answer Choices)
Since the opposite sides of a rectangle are parallel and due to vertical angles, . Furthermore, the ratio between the side lengths of the two triangles is . Labeling and , we see that turns out to be equal to . Since the denominator of must now be a multiple of 7, the only possible solution in the answer choices is .
Solution 4 (Area)
I will calculate using similar triangle, and using area of and .
Because and share the same base , the ratio is equal to the ratio of the altitudes of and to , which is equal to :
~isabelchen
Solution 5
~isabelchen
See Also
2016 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.