Difference between revisions of "2021 Fall AMC 12A Problems/Problem 1"

m
Line 8: Line 8:
  
 
== Solution ==
 
== Solution ==
We have <cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}.</cmath>
+
<cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}</cmath>
 
~MRENTHUSIASM
 
~MRENTHUSIASM
 +
 +
Alternatively,
 +
 +
<cmath>\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{169}=\frac{(10+3)^2(10-3)^2}{169}=\frac{(13)^2(7)^2}{13^2}=7^2\boxed{\textbf{(C) } 49}</cmath>
  
 
==See Also==
 
==See Also==

Revision as of 21:31, 23 November 2021

The following problem is from both the 2021 Fall AMC 10A #1 and 2021 Fall AMC 12A #1, so both problems redirect to this page.

Problem

What is the value of $\frac{(2112-2021)^2}{169}$?

$\textbf{(A) } 7 \qquad\textbf{(B) } 21 \qquad\textbf{(C) } 49 \qquad\textbf{(D) } 64 \qquad\textbf{(E) } 91$

Solution

\[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{91^2}{13^2}=\left(\frac{91}{13}\right)^2=7^2=\boxed{\textbf{(C) } 49}\] ~MRENTHUSIASM

Alternatively,

\[\frac{(2112-2021)^2}{169}=\frac{91^2}{169}=\frac{(10^2-3^2)^2}{169}=\frac{(10+3)^2(10-3)^2}{169}=\frac{(13)^2(7)^2}{13^2}=7^2\boxed{\textbf{(C) } 49}\]

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png