Difference between revisions of "1996 AIME Problems/Problem 5"
(→See also) |
(solution) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Suppose that the | + | Suppose that the [[root]]s of <math>x^3+3x^2+4x-11=0</math> are <math>a</math>, <math>b</math>, and <math>c</math>, and that the roots of <math>x^3+rx^2+sx+t=0</math> are <math>a+b</math>, <math>b+c</math>, and <math>c+a</math>. Find <math>t</math>. |
== Solution == | == Solution == | ||
− | { | + | Use [[Vieta's formulas]]. These tell us that <math>a + b + c = s = -3</math>, <math>ab + bc + ca = 4</math>, and <math>abc = 11</math> for the first polynomial. Then: |
+ | <div style="text-align:center;"> | ||
+ | <math>\begin{eqnarray*} | ||
+ | t &=& -(a+b)(b+c)(c+a)\ | ||
+ | &=& -[(s-a)(s-b)(s-c)]\ | ||
+ | &=& -[(-3-a)(-3-b)(-3-c)]\ | ||
+ | &=& [(a+3)(b+3)(c+3)]\ | ||
+ | &=& abc + 3[ab + bc + ca] + 9[a + b + c] + 27\ | ||
+ | t &=& 11 + 3(4) + 9(-3) + 27 = 23</math></div> | ||
+ | |||
== See also == | == See also == | ||
− | + | {{AIME box|year=1996|num-b=4|num-a=6}} | |
− | + | [[Category:Intermediate Algebra Problems]] |
Revision as of 19:07, 24 September 2007
Problem
Suppose that the roots of are , , and , and that the roots of are , , and . Find .
Solution
Use Vieta's formulas. These tell us that , , and for the first polynomial. Then:
$\begin{eqnarray*} t &=& -(a+b)(b+c)(c+a)\
&=& -[(s-a)(s-b)(s-c)]\\ &=& -[(-3-a)(-3-b)(-3-c)]\\ &=& [(a+3)(b+3)(c+3)]\\ &=& abc + 3[ab + bc + ca] + 9[a + b + c] + 27\\t &=& 11 + 3(4) + 9(-3) + 27 = 23$ (Error compiling LaTeX. Unknown error_msg)
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |