Difference between revisions of "2006 AIME I Problems/Problem 5"
(→Solution) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | |||
− | |||
− | |||
− | |||
+ | When rolling a certain unfair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6, the probability of obtaining face <math> F </math> is greater than 1/6, the probability of obtaining the face opposite is less than 1/6, the probability of obtaining any one of the other four faces is 1/6, and the sum of the numbers on opposite faces is 7. When two such dice are rolled, the probability of obtaining a sum of 7 is <math>47/288</math>. Given that the [[probability]] of obtaining face <math> F </math> is <math> m/n, </math> where <math> m </math> and <math> n </math> are [[relatively prime]] positive integers, find <math> m+n. </math> | ||
== Solution == | == Solution == |
Revision as of 13:08, 25 September 2007
Problem
When rolling a certain unfair six-sided die with faces numbered 1, 2, 3, 4, 5, and 6, the probability of obtaining face is greater than 1/6, the probability of obtaining the face opposite is less than 1/6, the probability of obtaining any one of the other four faces is 1/6, and the sum of the numbers on opposite faces is 7. When two such dice are rolled, the probability of obtaining a sum of 7 is . Given that the probability of obtaining face is where and are relatively prime positive integers, find
Solution
For now, assume that face has a 6, so the opposite face has a 1. Let be the probability of rolling a number on one die and let be the probability of rolling a number on the other die. 7 can be obtained by rolling a and , 5 and 2, 3 and 4, or 4 and 3. Each has a probability of , totaling . Subtracting all these probabilities from leaves chance of getting a 1 on die and a 6 on die or a 6 on die and a 1 on die :
Since the two dice are identical, and so
Also, we know that and that the total probability must be , so:
Combining the equations:
We know that , so it can't be . Therefore, it has to be and the answer is .
Note also that the initial assumption that face was the face labelled 6 is unnecessary -- we would have carried out exactly the same steps and found exactly the same probability no matter which face it was.
See also
2006 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |