Difference between revisions of "2022 AMC 8 Problems/Problem 3"

(Created page with "==Problem== When three positive integers <math>a</math>, <math>b</math>, and <math>c</math> are multiplied together, their product is <math>100</math>. Suppose <math>a < b <...")
 
Line 6: Line 6:
  
 
==Solution==
 
==Solution==
IN PROGRESS
+
 
 +
The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath>
 +
It is clear that <math>c\geq10,</math> so we apply casework to <math>c:</math>
 +
 
 +
* If <math>c=10,</math> then <math>(a,b,c)=(2,5,10).</math>
 +
 
 +
* If <math>c=20,</math> then <math>(a,b,c)=(1,5,20).</math>
 +
 
 +
* If <math>c=25,</math> then <math>(a,b,c)=(1,4,25).</math>
 +
 
 +
* If <math>c=50,</math> then <math>(a,b,c)=(1,2,50).</math>
 +
 
 +
Together, the numbers <math>a,b,</math> and <math>c</math> can be chosen in <math>\boxed{\textbf{(E)} ~4}</math> ways.
  
 
~MRENTHUSIASM
 
~MRENTHUSIASM

Revision as of 11:01, 28 January 2022

Problem

When three positive integers $a$, $b$, and $c$ are multiplied together, their product is $100$. Suppose $a < b < c$. In how many ways can the numbers be chosen?

$\textbf{(A)} ~0\qquad\textbf{(B)} ~1\qquad\textbf{(C)} ~2\qquad\textbf{(D)} ~3\qquad\textbf{(E)} ~4$

Solution

The positive divisors of $100$ are \[1,2,4,5,10,20,25,50,100.\] It is clear that $c\geq10,$ so we apply casework to $c:$

  • If $c=10,$ then $(a,b,c)=(2,5,10).$
  • If $c=20,$ then $(a,b,c)=(1,5,20).$
  • If $c=25,$ then $(a,b,c)=(1,4,25).$
  • If $c=50,$ then $(a,b,c)=(1,2,50).$

Together, the numbers $a,b,$ and $c$ can be chosen in $\boxed{\textbf{(E)} ~4}$ ways.

~MRENTHUSIASM

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png