Difference between revisions of "2022 AMC 8 Problems/Problem 18"
(→Solution 2(Parallelograms, More Detailed)) |
MRENTHUSIASM (talk | contribs) m (→Solution) |
||
Line 6: | Line 6: | ||
<math>\textbf{(A) } 20 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 40 \qquad \textbf{(D) } 50 \qquad \textbf{(E) } 80</math> | <math>\textbf{(A) } 20 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 40 \qquad \textbf{(D) } 50 \qquad \textbf{(E) } 80</math> | ||
− | ==Solution== | + | ==Solution 1== |
The midpoints of the four sides of every rectangle are the vertices of a rhombus whose area is half the area of the rectangle. | The midpoints of the four sides of every rectangle are the vertices of a rhombus whose area is half the area of the rectangle. |
Revision as of 10:18, 29 January 2022
Problem
The midpoints of the four sides of a rectangle are and What is the area of the rectangle?
Solution 1
The midpoints of the four sides of every rectangle are the vertices of a rhombus whose area is half the area of the rectangle.
Note that and are the vertices of a rhombus whose diagonals have lengths and It follows that the area of rhombus is so the area of the rectangle is
~MRENTHUSIASM
Solution 2(Parallelograms, More Detailed)
Note that if a rectangle has area , the area of the quadrilateral formed by its midpoints is . Since are the midpoints of the rectangle, its area would be . Now, note that is a parallelogram since and . Note that the parallelogram's altitude from to is and . Thus, its area is . The area of the rectangle follows as
~Fruitz
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 19 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.