Difference between revisions of "2022 AMC 8 Problems/Problem 14"

(Created page with "==Problem== In how many ways can the letters in <math>\textbf{BEEKEEPER}</math> be rearranged so that two or more <math>\textbf{E}</math>s do not appear together? <math>\tex...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
In how many ways can the letters in <math>\textbf{BEEKEEPER}</math> be rearranged so that two or more <math>\textbf{E}</math>s do not appear together?
+
In how many ways can the letters in BEEKEEPER be rearranged so that two or more Es do not appear together?
  
 
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120</math>
 
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120</math>

Revision as of 17:37, 31 January 2022

Problem

In how many ways can the letters in BEEKEEPER be rearranged so that two or more Es do not appear together?

$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120$

Solution

All valid arrangements of the letters must be of the form \[\textbf{E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E}.\] The problem is equivalent to counting the arrangements of $\textbf{B},\textbf{K},\textbf{P},$ and $\textbf{R}$ into the four blanks, in which there are $4!=\boxed{\textbf{(D) } 24}$ ways.

~MRENTHUSIASM

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png