Difference between revisions of "2022 AMC 8 Problems/Problem 8"

m (Solution 2)
m
Line 12: Line 12:
 
==Solution 2==
 
==Solution 2==
  
The original expression becomes <cmath>\frac{20!}{\frac{22!}{2}} = \frac{20! \cdot 2}{22!} = \frac{20! \cdot 2}{20! \cdot 21 \cdot 22} = \frac{2}{21 \cdot 22} = \frac{1}{21 \cdot 11} = \boxed{\textbf{(B) } \frac{1}{231}}.</cmath>
+
The original expression becomes <cmath>\frac{20!}{22!/2} = \frac{20! \cdot 2!}{22!} = \frac{20! \cdot 2}{20! \cdot 21 \cdot 22} = \frac{2}{21 \cdot 22} = \frac{1}{21 \cdot 11} = \boxed{\textbf{(B) } \frac{1}{231}}.</cmath>
  
 
~hh99754539
 
~hh99754539

Revision as of 20:00, 31 January 2022

Problem

What is the value of \[\frac{1}{3}\cdot\frac{2}{4}\cdot\frac{3}{5}\cdots\frac{18}{20}\cdot\frac{19}{21}\cdot\frac{20}{22}?\]

$\textbf{(A) } \frac{1}{462} \qquad \textbf{(B) } \frac{1}{231} \qquad \textbf{(C) } \frac{1}{132} \qquad \textbf{(D) } \frac{2}{213} \qquad \textbf{(E) } \frac{1}{22}$

Solution 1

Note that common factors (from $3$ to $20,$ inclusive) of the numerator and the denominator cancel. Therefore, the original expression becomes \[\frac{1}{\cancel{3}}\cdot\frac{2}{\cancel{4}}\cdot\frac{\cancel{3}}{\cancel{5}}\cdots\frac{\cancel{18}}{\cancel{20}}\cdot\frac{\cancel{19}}{21}\cdot\frac{\cancel{20}}{22}=\frac{1\cdot2}{21\cdot22}=\frac{1}{21\cdot11}=\boxed{\textbf{(B) } \frac{1}{231}}.\]

~MRENTHUSIASM

Solution 2

The original expression becomes \[\frac{20!}{22!/2} = \frac{20! \cdot 2!}{22!} = \frac{20! \cdot 2}{20! \cdot 21 \cdot 22} = \frac{2}{21 \cdot 22} = \frac{1}{21 \cdot 11} = \boxed{\textbf{(B) } \frac{1}{231}}.\]

~hh99754539

See Also

2022 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png