Difference between revisions of "2022 AIME I Problems/Problem 4"

(Added in detail explanation.)
Line 1: Line 1:
==solution 1==
+
==Problem==
  
Write <math>i=e^{i\frac{\pi}{2}}</math>, it turns to: <math>\frac{\pi}{6}(3+r)=\frac{4n\pi}{6}</math>, so <math>3+r=4s+12k</math>
+
Let <math>w = \dfrac{\sqrt{3} + i}{2}</math> and <math>z = \dfrac{-1 + i\sqrt{3}}{2},</math> where <math>i = \sqrt{-1}.</math> Find the number of ordered pairs <math>(r,s)</math> of positive integers not exceeding <math>100</math> that satisfy the equation <math>i \cdot w^r = z^s.</math>
  
it follows a pattern that <math>s=1,r=1,13....97</math> has 9 values; <math>s=2,r=5,17...89</math> 8 values and <math>s=3,r=9,21,...93</math> 8 values.
+
==Solution==
  
So the answer is <math>33*(9+8+8)+9=834</math>
+
We rewrite <math>w</math> and <math>z</math> in polar form:
 +
<cmath>\begin{align*}
 +
w &= e^{i\cdot\frac{\pi}{6}}, \
 +
z &= e^{i\cdot\frac{2\pi}{3}}.
 +
\end{align*}</cmath>
 +
The equation <math>i \cdot w^r = z^s</math> becomes
 +
<cmath>\begin{align*}
 +
e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \
 +
e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)}.
 +
\end{align*}</cmath>
 +
Note that <math>\frac{\pi}{2}+\frac{\pi}{6}r=\frac{2\pi}{3}s+2\pi k</math> for some integer <math>k,</math> or
  
~bluesoul
+
~MRENTHUSIASM ~bluesoul
 +
 
 +
==See Also==
 +
{{AIME box|year=2022|n=I|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Revision as of 16:39, 17 February 2022

Problem

Let $w = \dfrac{\sqrt{3} + i}{2}$ and $z = \dfrac{-1 + i\sqrt{3}}{2},$ where $i = \sqrt{-1}.$ Find the number of ordered pairs $(r,s)$ of positive integers not exceeding $100$ that satisfy the equation $i \cdot w^r = z^s.$

Solution

We rewrite $w$ and $z$ in polar form: \begin{align*} w &= e^{i\cdot\frac{\pi}{6}}, \\ z &= e^{i\cdot\frac{2\pi}{3}}. \end{align*} The equation $i \cdot w^r = z^s$ becomes \begin{align*} e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \\ e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)}. \end{align*} Note that $\frac{\pi}{2}+\frac{\pi}{6}r=\frac{2\pi}{3}s+2\pi k$ for some integer $k,$ or

~MRENTHUSIASM ~bluesoul

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png