Difference between revisions of "2022 AIME I Problems/Problem 4"
MRENTHUSIASM (talk | contribs) |
MRENTHUSIASM (talk | contribs) |
||
Line 13: | Line 13: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \ | e^{i\cdot\frac{\pi}{2}} \cdot \left(e^{i\cdot\frac{\pi}{6}}\right)^r &= \left(e^{i\cdot\frac{2\pi}{3}}\right)^s \ | ||
− | e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)} | + | e^{i\left(\frac{\pi}{2}+\frac{\pi}{6}r\right)} &= e^{i\left(\frac{2\pi}{3}s\right)} \ |
− | \ | ||
− | |||
− | |||
\frac{\pi}{2}+\frac{\pi}{6}r &= \frac{2\pi}{3}s+2\pi k \ | \frac{\pi}{2}+\frac{\pi}{6}r &= \frac{2\pi}{3}s+2\pi k \ | ||
3+r &= 4s+12k \ | 3+r &= 4s+12k \ | ||
Line 24: | Line 21: | ||
Since <math>4\leq 3+r\leq 103</math> and <math>4\mid 3+r,</math> we conclude that | Since <math>4\leq 3+r\leq 103</math> and <math>4\mid 3+r,</math> we conclude that | ||
+ | <cmath>\begin{align*} | ||
+ | 3+r &\in \{4,8,12,\ldots,100\}, \ | ||
+ | s+3k &\in \{1,2,3,\ldots,25\}. | ||
+ | \end{align*}</cmath> | ||
+ | Note that the values for <math>s+3k</math> and the values for <math>r</math> have one-to-one correspondence. | ||
+ | We apply casework to the values for <math>s+3k:</math> | ||
+ | <ol style="margin-left: 1.5em;"> | ||
+ | <li><math>s+3k\equiv0\pmod{3}</math></li><p> | ||
+ | There are <math>8</math> values for <math>s+3k,</math> so there are <math>8</math> values for <math>r.</math> It follows that <math>s\equiv0\pmod{3},</math> so there are <math>33</math> values for <math>s.</math> | ||
+ | <li><math>s+3k\equiv1\pmod{3}</math></li><p> | ||
+ | <li><math>s+3k\equiv2\pmod{3}</math></li><p> | ||
+ | </ol> | ||
~MRENTHUSIASM ~bluesoul | ~MRENTHUSIASM ~bluesoul | ||
Revision as of 17:02, 17 February 2022
Problem
Let and where Find the number of ordered pairs of positive integers not exceeding that satisfy the equation
Solution
We rewrite and in polar form: The equation becomes for some integer
Since and we conclude that Note that the values for and the values for have one-to-one correspondence.
We apply casework to the values for
There are values for so there are values for It follows that so there are values for
~MRENTHUSIASM ~bluesoul
See Also
2022 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.