Difference between revisions of "2022 AIME I Problems/Problem 3"

m (Diagram)
(Solution 1: Made the diagram consistent.)
Line 83: Line 83:
  
 
Extend line <math>PQ</math> to meet <math>AD</math> at <math>P'</math> and <math>BC</math> at <math>Q'</math>. The diagram looks like this:
 
Extend line <math>PQ</math> to meet <math>AD</math> at <math>P'</math> and <math>BC</math> at <math>Q'</math>. The diagram looks like this:
 
 
<asy>
 
<asy>
unitsize(0.016cm);
+
/* Made by MRENTHUSIASM */
pair A = (-250,324.4);
+
size(300);
pair B = (250, 324.4);
+
pair A, B, C, D, A1, B1, C1, D1, P, Q, P1, Q1;
pair C = (325, 0);
+
A = (-250,6*sqrt(731));
pair D = (-325, 0);
+
B = (250,6*sqrt(731));
draw(A--B--C--D--cycle);
+
C = (325,-6*sqrt(731));
 
+
D = (-325,-6*sqrt(731));
 
+
A1 = bisectorpoint(B,A,D);
pair P1 = (-121, 162.2);
+
B1 = bisectorpoint(A,B,C);
pair P2 = (-287.5,162.2);
+
C1 = bisectorpoint(B,C,D);
pair Q1 = (121, 162.2);
+
D1 = bisectorpoint(A,D,C);
pair Q2 = (287.5,162.2);
+
P = intersectionpoint(A--300*(A1-A)+A,D--300*(D1-D)+D);
dot(P1);
+
Q = intersectionpoint(B--300*(B1-B)+B,C--300*(C1-C)+C);
dot(Q1);
+
P1 = intersectionpoint(A--D,P--(-300)*(Q-P)+P);
dot(P2);
+
Q1 = intersectionpoint(B--C,Q--300*(Q-P)+Q);
dot(Q2);
+
draw(anglemark(P,A,B,1000),red);
 
+
draw(anglemark(D,A,P,1000),red);
draw(P2--Q2);
+
draw(anglemark(A,B,Q,1000),red);
draw(A--P1, dashed);
+
draw(anglemark(Q,B,C,1000),red);
draw(D--P1, dashed);
+
draw(anglemark(P,D,A,1000),red);
draw(B--Q1, dashed);
+
draw(anglemark(C,D,P,1000),red);
draw(C--Q1, dashed);
+
draw(anglemark(Q,C,D,1000),red);
 
+
draw(anglemark(B,C,Q,1000),red);
 
+
add(pathticks(anglemark(P,A,B,1000), n = 1, r = 0.15, s = 750, red));
label("$A$", A, N);
+
add(pathticks(anglemark(D,A,P,1000), n = 1, r = 0.15, s = 750, red));
label("$B$", B, N);
+
add(pathticks(anglemark(A,B,Q,1000), n = 1, r = 0.15, s = 750, red));
 
+
add(pathticks(anglemark(Q,B,C,1000), n = 1, r = 0.15, s = 750, red));
label("$C$", C, S);
+
add(pathticks(anglemark(P,D,A,1000), n = 2, r = 0.12, spacing = 150, s = 750, red));
label("$D$", D, S);
+
add(pathticks(anglemark(C,D,P,1000), n = 2, r = 0.12, spacing = 150, s = 750, red));
 
+
add(pathticks(anglemark(Q,C,D,1000), n = 2, r = 0.12, spacing = 150, s = 750, red));
label("$P$", P1, N);
+
add(pathticks(anglemark(B,C,Q,1000), n = 2, r = 0.12, spacing = 150, s = 750, red));
label("$Q$", Q1, N);
+
dot("$A$",A,1.5*dir(A),linewidth(4));
 
+
dot("$B$",B,1.5*dir(B),linewidth(4));
label("$P'$", P2, W);
+
dot("$C$",C,1.5*dir(C),linewidth(4));
label("$Q'$", Q2, E);
+
dot("$D$",D,1.5*dir(D),linewidth(4));
 +
dot("$P$",P,1.5*NE,linewidth(4));
 +
dot("$Q$",Q,1.5*NW,linewidth(4));
 +
dot("$P'$",P1,1.5*W,linewidth(4));
 +
dot("$Q'$",Q1,1.5*E,linewidth(4));
 +
draw(A--B--C--D--cycle^^A--P--D^^B--Q--C^^P--Q);
 +
draw(P--P1^^Q--Q1,dashed);
 
</asy>
 
</asy>
 
 
Because the trapezoid is isosceles, by symmetry <math>PQ</math> is parallel to <math>AB</math> and <math>BC</math>. Therefore, <math>\angle PAB \cong \angle APP'</math> by interior angles and <math>\angle PAB \cong \angle PAD</math> by the problem statement. Thus, <math>\triangle P'AP</math> is isosceles with <math>P'P = P'A</math>. By symmetry, <math>P'DP</math> is also isosceles, and thus <math>P'A = \frac{AD}{2}</math>. Similarly, the same thing is happening on the right side of the trapezoid, and thus <math>P'Q'</math> is the midline of the trapezoid. Then, <math>PQ = P'Q' - (P'P + Q'Q)</math>.
 
Because the trapezoid is isosceles, by symmetry <math>PQ</math> is parallel to <math>AB</math> and <math>BC</math>. Therefore, <math>\angle PAB \cong \angle APP'</math> by interior angles and <math>\angle PAB \cong \angle PAD</math> by the problem statement. Thus, <math>\triangle P'AP</math> is isosceles with <math>P'P = P'A</math>. By symmetry, <math>P'DP</math> is also isosceles, and thus <math>P'A = \frac{AD}{2}</math>. Similarly, the same thing is happening on the right side of the trapezoid, and thus <math>P'Q'</math> is the midline of the trapezoid. Then, <math>PQ = P'Q' - (P'P + Q'Q)</math>.
  

Revision as of 17:19, 18 February 2022

Problem

In isosceles trapezoid $ABCD$, parallel bases $\overline{AB}$ and $\overline{CD}$ have lengths $500$ and $650$, respectively, and $AD=BC=333$. The angle bisectors of $\angle{A}$ and $\angle{D}$ meet at $P$, and the angle bisectors of $\angle{B}$ and $\angle{C}$ meet at $Q$. Find $PQ$.

Diagram

[asy] /* Made by MRENTHUSIASM */ size(300); pair A, B, C, D, A1, B1, C1, D1, P, Q; A = (-250,6*sqrt(731)); B = (250,6*sqrt(731)); C = (325,-6*sqrt(731)); D = (-325,-6*sqrt(731)); A1 = bisectorpoint(B,A,D); B1 = bisectorpoint(A,B,C); C1 = bisectorpoint(B,C,D); D1 = bisectorpoint(A,D,C); P = intersectionpoint(A--300*(A1-A)+A,D--300*(D1-D)+D); Q = intersectionpoint(B--300*(B1-B)+B,C--300*(C1-C)+C); draw(anglemark(P,A,B,1000),red); draw(anglemark(D,A,P,1000),red); draw(anglemark(A,B,Q,1000),red); draw(anglemark(Q,B,C,1000),red); draw(anglemark(P,D,A,1000),red); draw(anglemark(C,D,P,1000),red); draw(anglemark(Q,C,D,1000),red); draw(anglemark(B,C,Q,1000),red); add(pathticks(anglemark(P,A,B,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(D,A,P,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(A,B,Q,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(Q,B,C,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(P,D,A,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(C,D,P,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(Q,C,D,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(B,C,Q,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); dot("$A$",A,1.5*dir(A),linewidth(4)); dot("$B$",B,1.5*dir(B),linewidth(4)); dot("$C$",C,1.5*dir(C),linewidth(4)); dot("$D$",D,1.5*dir(D),linewidth(4)); dot("$P$",P,1.5*NE,linewidth(4)); dot("$Q$",Q,1.5*NW,linewidth(4)); draw(A--B--C--D--cycle^^A--P--D^^B--Q--C^^P--Q); label("$500$",midpoint(A--B),1.25N); label("$650$",midpoint(C--D),1.25S); label("$333$",midpoint(A--D),1.25W); label("$333$",midpoint(B--C),1.25E); [/asy] ~MRENTHUSIASM ~ihatemath123

[asy] unitsize(0.016cm); pair A = (-250,324.4); pair B = (250, 324.4); pair C = (325, 0); pair D = (-325, 0); draw(A--B--C--D--cycle); pair W = (8,0); pair X = (-8, 0); pair Y = (-83,324.4); pair Z = (83,324.4);  pair P = (-121, 162.2); pair Q = (121, 162.2); dot(P); dot(Q);  draw(A--W, dashed); draw(B--X, dashed); draw(C--Y, dashed); draw(D--Z, dashed); label("$A$", A, N); label("$B$", B, N); label("$Y$", Y, N); label("$Z$", Z, N); label("$C$", C, S); label("$D$", D, S); label("$W$", W, SE); label("$X$", X, SW); label("$P$", P, N); label("$Q$", Q, N); [/asy]

Solution 1

Extend line $PQ$ to meet $AD$ at $P'$ and $BC$ at $Q'$. The diagram looks like this: [asy] /* Made by MRENTHUSIASM */ size(300); pair A, B, C, D, A1, B1, C1, D1, P, Q, P1, Q1; A = (-250,6*sqrt(731)); B = (250,6*sqrt(731)); C = (325,-6*sqrt(731)); D = (-325,-6*sqrt(731)); A1 = bisectorpoint(B,A,D); B1 = bisectorpoint(A,B,C); C1 = bisectorpoint(B,C,D); D1 = bisectorpoint(A,D,C); P = intersectionpoint(A--300*(A1-A)+A,D--300*(D1-D)+D); Q = intersectionpoint(B--300*(B1-B)+B,C--300*(C1-C)+C); P1 = intersectionpoint(A--D,P--(-300)*(Q-P)+P); Q1 = intersectionpoint(B--C,Q--300*(Q-P)+Q); draw(anglemark(P,A,B,1000),red); draw(anglemark(D,A,P,1000),red); draw(anglemark(A,B,Q,1000),red); draw(anglemark(Q,B,C,1000),red); draw(anglemark(P,D,A,1000),red); draw(anglemark(C,D,P,1000),red); draw(anglemark(Q,C,D,1000),red); draw(anglemark(B,C,Q,1000),red); add(pathticks(anglemark(P,A,B,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(D,A,P,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(A,B,Q,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(Q,B,C,1000), n = 1, r = 0.15, s = 750, red)); add(pathticks(anglemark(P,D,A,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(C,D,P,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(Q,C,D,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); add(pathticks(anglemark(B,C,Q,1000), n = 2, r = 0.12, spacing = 150, s = 750, red)); dot("$A$",A,1.5*dir(A),linewidth(4)); dot("$B$",B,1.5*dir(B),linewidth(4)); dot("$C$",C,1.5*dir(C),linewidth(4)); dot("$D$",D,1.5*dir(D),linewidth(4)); dot("$P$",P,1.5*NE,linewidth(4)); dot("$Q$",Q,1.5*NW,linewidth(4)); dot("$P'$",P1,1.5*W,linewidth(4)); dot("$Q'$",Q1,1.5*E,linewidth(4)); draw(A--B--C--D--cycle^^A--P--D^^B--Q--C^^P--Q); draw(P--P1^^Q--Q1,dashed); [/asy] Because the trapezoid is isosceles, by symmetry $PQ$ is parallel to $AB$ and $BC$. Therefore, $\angle PAB \cong \angle APP'$ by interior angles and $\angle PAB \cong \angle PAD$ by the problem statement. Thus, $\triangle P'AP$ is isosceles with $P'P = P'A$. By symmetry, $P'DP$ is also isosceles, and thus $P'A = \frac{AD}{2}$. Similarly, the same thing is happening on the right side of the trapezoid, and thus $P'Q'$ is the midline of the trapezoid. Then, $PQ = P'Q' - (P'P + Q'Q)$.

Since $P'P = P'A = \frac{AD}{2}, Q'Q = Q'B = \frac{BC}{2}$ and $AD = BC = 333$, we have $P'P + Q'Q = \frac{333}{2} + \frac{333}{2} = 333$. The length of the midline of a trapezoid is the average of their bases, so $P'Q' = \frac{500+650}{2} = 575$. Finally, $PQ = 575 - 333 = \boxed{242}$

~KingRavi

Solution 2

Extend lines $AP$ and $BQ$ to meet line $DC$ at points $W$ and $X$, respectively, and extend lines $DP$ and $CQ$ to meet $AB$ at points $Z$ and $Y$, respectively.

Claim: quadrilaterals $AZWD$ and $BYXD$ are rhombuses.

Proof: Since $\angle DAB + \angle ADC = 180^{\circ}$, $\angle ADP + \angle PAD = 90^{\circ}$. Therefore, triangles $APD$, $APZ$, $DPW$ and $PZW$ are all right triangles. By SAA congruence, the first three triangles are congruent; by SAS congruence, $\triangle PZW$ is congruent to the other three. Therefore, $AD = DW = WZ = AZ$, so $AZWD$ is a rhombus. By symmetry, $BYXC$ is also a rhombus.

Extend line $PQ$ to meet $\overline{AD}$ and $\overline{BC}$ at $R$ and $S$, respectively. Because of rhombus properties, $RP = QS = \frac{333}{2}$. Also, by rhombus properties, $R$ and $S$ are the midpoints of segments $AD$ and $BC$, respectively; therefore, by trapezoid properties, $RS = \frac{AB + CD}{2} = 575$. Finally, $PQ = RS - RP - QS = \boxed{242}$.

~ihatemath123

Video Solution (Mathematical Dexterity)

https://www.youtube.com/watch?v=fNAvxXnvAxs

Video Solution

https://www.youtube.com/watch?v=h_LOT-rwt08

~Steven Chen (www.professorchenedu.com)

See Also

2022 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png