Difference between revisions of "1999 AMC 8 Problems/Problem 12"

(Solution)
 
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
The ratio means that for every <math>11</math> games won, <math>4</math> are lost, so the team has won <math>11x</math> games, lost <math>4x</math> games, and played <math>15x</math> games for some positive integer <math>x</math>. The percentage of games lost is just <math>\dfrac{4x}{15x}\times100=\dfrac{4}{15}\times 100=26.\overline{6}\%\approx\boxed{\text{(B)}\ 27\%}</math>
 
The ratio means that for every <math>11</math> games won, <math>4</math> are lost, so the team has won <math>11x</math> games, lost <math>4x</math> games, and played <math>15x</math> games for some positive integer <math>x</math>. The percentage of games lost is just <math>\dfrac{4x}{15x}\times100=\dfrac{4}{15}\times 100=26.\overline{6}\%\approx\boxed{\text{(B)}\ 27\%}</math>
 +
 +
==Alternate Solution==
 +
The Won/Lost ratio is 11/4 so, for some number <math>N</math>, the team won <math>11N</math> games and lost <math>4N</math> games. Thus, the team played <math>15N</math> games and the fraction of games lost is <math>\dfrac{4N}{15N}=\dfrac{4}{15}\approx 0.27=\boxed{27\%}.</math>
 +
-Clara Garza
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 18:56, 9 June 2022

Problem

The ratio of the number of games won to the number of games lost (no ties) by the Middle School Middies is $11/4$. To the nearest whole percent, what percent of its games did the team lose?

$\text{(A)}\ 24\% \qquad \text{(B)}\ 27\% \qquad \text{(C)}\ 36\% \qquad \text{(D)}\ 45\% \qquad \text{(E)}\ 73\%$

Solution

The ratio means that for every $11$ games won, $4$ are lost, so the team has won $11x$ games, lost $4x$ games, and played $15x$ games for some positive integer $x$. The percentage of games lost is just $\dfrac{4x}{15x}\times100=\dfrac{4}{15}\times 100=26.\overline{6}\%\approx\boxed{\text{(B)}\ 27\%}$

Alternate Solution

The Won/Lost ratio is 11/4 so, for some number $N$, the team won $11N$ games and lost $4N$ games. Thus, the team played $15N$ games and the fraction of games lost is $\dfrac{4N}{15N}=\dfrac{4}{15}\approx 0.27=\boxed{27\%}.$ -Clara Garza

Video Solution

https://youtu.be/hF4QIyb7R_4 Soo, DRMS, NM

See also

1999 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png