Difference between revisions of "2021 AMC 10B Problems/Problem 7"

m (Solution 2 (Explains Solution 1 Using Intuition))
m (Video Solution by Interstigation)
 
(14 intermediate revisions by 4 users not shown)
Line 3: Line 3:
  
 
<math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math>
 
<math>\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi</math>
==Solution 1==
+
 
 +
==Solution==
 +
Suppose that line <math>\ell</math> is horizontal, and each circle lies either north or south to <math>\ell.</math> We construct the circles one by one:
 +
<ol style="margin-left: 1.5em;">
 +
  <li>Without the loss of generality, we draw the circle with radius <math>7</math> north to <math>\ell.</math></li><p>
 +
  <li>To maximize the area of region <math>S,</math> we draw the circle with radius <math>5</math> south to <math>\ell.</math></li><p>
 +
  <li>Now, we need to subtract the circle with radius <math>3</math> <i><b>at least</b></i>. The optimal situation is that the circle with radius <math>3</math> encompasses the circle with radius <math>1,</math> in which we do not need to subtract more. That is, the two smallest circles are on the same side of <math>\ell,</math> but can be on either side. </li>
 +
</ol>
 +
The diagram below shows one possible configuration of the four circles:
 
<asy>
 
<asy>
/* diagram made by samrocksnature */
+
/* diagram made by samrocksnature, edited by MRENTHUSIASM */
 
pair A=(10,0);
 
pair A=(10,0);
 
pair B=(-10,0);
 
pair B=(-10,0);
 
draw(A--B);
 
draw(A--B);
draw(circle((0,-1),1));
+
filldraw(circle((0,7),7),yellow);
draw(circle((0,-3),3));
+
filldraw(circle((0,-5),5),yellow);
draw(circle((0,-5),5));
+
filldraw(circle((0,-3),3),white);
draw(circle((0,7),7));
+
filldraw(circle((0,-1),1),white);
dot((0,7));
+
dot((0,0));
draw((0,7)--(0,0));
+
label("$A$",(0,0),(0,1.5));
label("$7$",(0,3.5),E);
+
label("$\ell$",(10,0),(1.5,0));
label("$\ell$",(-9,0),S);
 
 
</asy>
 
</asy>
After a bit of wishful thinking and inspection, we find that the above configuration maximizes our area, which is <math>49 \pi + (25-9) \pi=65 \pi \rightarrow \boxed{\textbf{(D)}}</math>
+
Together, the answer is <math>\pi\cdot7^2+\pi\cdot5^2-\pi\cdot3^2=\boxed{\textbf{(D) }65\pi}.</math>
 
 
~ samrocksnature
 
 
 
==Solution 2 (Explains Solution 1 Using Intuition)==
 
Suppose that line <math>\ell</math> is horizontal, and each circle lies either north or south to <math>\ell.</math> We construct the circles one by one:
 
<ol style="margin-left: 1.5em;">
 
  <li>Without the loss of generality, we draw the circle with radius <math>7</math> north to <math>\ell.</math></li><p>
 
  <li>To maximize the area of the desired region, we draw the circle with radius <math>5</math> south to <math>\ell</math> by intuition.</li><p>
 
  <li>Now, we need to subtract the circle with radius <math>3</math> <i><b>at least</b></i>. The optimal situation is that the circle with radius <math>3</math> encompasses the circle with radius <math>1,</math> in which we do not need to subtract more. That is, the two smallest circles are on the same side of <math>\ell,</math> but can be on either side. The diagram in Solution 1 shows one possible configuration of the four circles.</li><p>
 
</ol>
 
  
Together, the answer is <math>7^2\cdot\pi+5^2\cdot\pi-3^2\cdot\pi=\boxed{\textbf{(D) }65\pi}.</math>
+
~samrocksnature ~MRENTHUSIASM
 
 
~MRENTHUSIASM
 
  
 
== Video Solution by OmegaLearn (Area of Circles and Logic) ==
 
== Video Solution by OmegaLearn (Area of Circles and Logic) ==
Line 47: Line 42:
  
 
~Interstigation
 
~Interstigation
 +
 +
==Video Solution==
 +
https://youtu.be/3jC_yOKA7xE
 +
 +
~Education, the Study of Everything
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2021|ab=B|num-b=6|num-a=8}}
 
{{AMC10 box|year=2021|ab=B|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 17:22, 16 August 2022

Problem

In a plane, four circles with radii $1,3,5,$ and $7$ are tangent to line $\ell$ at the same point $A,$ but they may be on either side of $\ell$. Region $S$ consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region $S$?

$\textbf{(A) }24\pi \qquad \textbf{(B) }32\pi \qquad \textbf{(C) }64\pi \qquad \textbf{(D) }65\pi \qquad \textbf{(E) }84\pi$

Solution

Suppose that line $\ell$ is horizontal, and each circle lies either north or south to $\ell.$ We construct the circles one by one:

  1. Without the loss of generality, we draw the circle with radius $7$ north to $\ell.$
  2. To maximize the area of region $S,$ we draw the circle with radius $5$ south to $\ell.$
  3. Now, we need to subtract the circle with radius $3$ at least. The optimal situation is that the circle with radius $3$ encompasses the circle with radius $1,$ in which we do not need to subtract more. That is, the two smallest circles are on the same side of $\ell,$ but can be on either side.

The diagram below shows one possible configuration of the four circles: [asy] /* diagram made by samrocksnature, edited by MRENTHUSIASM */ pair A=(10,0); pair B=(-10,0); draw(A--B); filldraw(circle((0,7),7),yellow); filldraw(circle((0,-5),5),yellow); filldraw(circle((0,-3),3),white); filldraw(circle((0,-1),1),white); dot((0,0)); label("$A$",(0,0),(0,1.5)); label("$\ell$",(10,0),(1.5,0)); [/asy] Together, the answer is $\pi\cdot7^2+\pi\cdot5^2-\pi\cdot3^2=\boxed{\textbf{(D) }65\pi}.$

~samrocksnature ~MRENTHUSIASM

Video Solution by OmegaLearn (Area of Circles and Logic)

https://youtu.be/yPIFmrJvUxM

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/GYpAm8v1h-U?t=206

~IceMatrix

Video Solution by Interstigation

https://youtu.be/DvpN56Ob6Zw?t=555

~Interstigation

Video Solution

https://youtu.be/3jC_yOKA7xE

~Education, the Study of Everything

See Also

2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png