Difference between revisions of "1992 AHSME Problems/Problem 24"

(Created page with "== Problem == Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segmen...")
 
(Solution 2)
 
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segments <math>\overline{AB},\overline{BC}</math> and <math>\overline{AD}</math>, respectively, with <math>AE=BF=AG=2</math>. Let the line through <math>G</math> parallel to <math>\overline{EF}</math> intersect <math>\overline{CD}</math> at <math>H</math>. The area of quadrilateral <math>EFGH</math> is
+
Let <math>ABCD</math> be a parallelogram of area <math>10</math> with <math>AB=3</math> and <math>BC=5</math>. Locate <math>E,F</math> and <math>G</math> on segments <math>\overline{AB},\overline{BC}</math> and <math>\overline{AD}</math>, respectively, with <math>AE=BF=AG=2</math>. Let the line through <math>G</math> parallel to <math>\overline{EF}</math> intersect <math>\overline{CD}</math> at <math>H</math>. The area of quadrilateral <math>EFHG</math> is
  
 
<math>\text{(A) } 4\quad
 
<math>\text{(A) } 4\quad
Line 9: Line 9:
 
\text{(E) } 6</math>
 
\text{(E) } 6</math>
  
== Solution ==
+
== Solution 1 ==
<math>\fbox{C}</math>
+
<math>\fbox{C}</math> Use vectors. Place an origin at <math>A</math>, with <math>B = p, D = q, C = p + q</math>. We know that <math>\|p \times q\|=10</math>, and also <math>E=\frac{2}{3}p, F=p+\frac{2}{5}q, G = \frac{2}{5}q</math>, and now we can find the area of <math>EFHG</math> by dividing it into two triangles and using cross-products (the expressions simplify using the fact that the cross-product distributes over addition, it is anticommutative, and a vector crossed with itself gives zero).
 +
 
 +
== Solution 2 ==
 +
We note that <math>ABFG</math> is a parallelogram because <math>AG = BF = 2</math> and <math>AG \parallel BF</math>. Using the same reasoning, <math>GFCD</math> is also a parallelogram.
 +
 
 +
 
 +
Assume that the height of parallelogram <math>ABFG</math> with respect to base <math>AB</math> is <math>x</math>. Then, the area of parallelogram <math>ABFG</math> is <math>AB * x</math>. The area of triangle <math>EFG</math> is <math>\frac{AB * x}{2}</math>, which is half of the area of parallelogram <math>ABFG</math>.
 +
 
 +
 
 +
Likewise, the area of triangle <math>FGH</math> is half the area of parallelogram <math>GFCD</math>.
 +
 
 +
 
 +
Thus, <math>[EFHG] = [EFG] + [FGH] = 1/2[ABFG] + 1/2[GFCD] = 1/2[ABCD] = 1/2(10) = \boxed{5}</math>
  
 
== See also ==
 
== See also ==

Latest revision as of 18:17, 4 September 2022

Problem

Let $ABCD$ be a parallelogram of area $10$ with $AB=3$ and $BC=5$. Locate $E,F$ and $G$ on segments $\overline{AB},\overline{BC}$ and $\overline{AD}$, respectively, with $AE=BF=AG=2$. Let the line through $G$ parallel to $\overline{EF}$ intersect $\overline{CD}$ at $H$. The area of quadrilateral $EFHG$ is

$\text{(A) } 4\quad \text{(B) } 4.5\quad \text{(C) } 5\quad \text{(D) } 5.5\quad \text{(E) } 6$

Solution 1

$\fbox{C}$ Use vectors. Place an origin at $A$, with $B = p, D = q, C = p + q$. We know that $\|p \times q\|=10$, and also $E=\frac{2}{3}p, F=p+\frac{2}{5}q, G = \frac{2}{5}q$, and now we can find the area of $EFHG$ by dividing it into two triangles and using cross-products (the expressions simplify using the fact that the cross-product distributes over addition, it is anticommutative, and a vector crossed with itself gives zero).

Solution 2

We note that $ABFG$ is a parallelogram because $AG = BF = 2$ and $AG \parallel BF$. Using the same reasoning, $GFCD$ is also a parallelogram.


Assume that the height of parallelogram $ABFG$ with respect to base $AB$ is $x$. Then, the area of parallelogram $ABFG$ is $AB * x$. The area of triangle $EFG$ is $\frac{AB * x}{2}$, which is half of the area of parallelogram $ABFG$.


Likewise, the area of triangle $FGH$ is half the area of parallelogram $GFCD$.


Thus, $[EFHG] = [EFG] + [FGH] = 1/2[ABFG] + 1/2[GFCD] = 1/2[ABCD] = 1/2(10) = \boxed{5}$

See also

1992 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png