Difference between revisions of "2015 AMC 10A Problems/Problem 19"

(Solution 1 (No Trigonometry))
(Solution 4 (Trigonometry))
Line 43: Line 43:
  
 
Now, since <math>\triangle AEC\cong \triangle BDC</math> by ASA, <math>CE=CD</math>. Since, <math>DF=\frac{5\sqrt{3}-5}{2}</math>, <math>DC=2\cdot \frac{5\sqrt{3}-5}{2}=5\sqrt{3}-5</math>. By the sine area formula, <math>[CDE]=\frac{1}{2}\cdot \sin 30\cdot CD^2=\frac{1}{4}\cdot (100-50\sqrt{3})=\frac{50-25\sqrt{3}}{2}\implies \boxed{\textbf{(D)}}</math>
 
Now, since <math>\triangle AEC\cong \triangle BDC</math> by ASA, <math>CE=CD</math>. Since, <math>DF=\frac{5\sqrt{3}-5}{2}</math>, <math>DC=2\cdot \frac{5\sqrt{3}-5}{2}=5\sqrt{3}-5</math>. By the sine area formula, <math>[CDE]=\frac{1}{2}\cdot \sin 30\cdot CD^2=\frac{1}{4}\cdot (100-50\sqrt{3})=\frac{50-25\sqrt{3}}{2}\implies \boxed{\textbf{(D)}}</math>
 +
 +
==Solution 5 (Basic Trigonometry)==
 +
 +
Prerequisite knowledge for this solution: the side ratios of a 30-60-90, and 45-45-90 right triangle.
 +
 +
 +
We let point C be the origin. Since <math>\overline{CD}</math> and <math>\overline{CE}</math> trisect <math>\angle ACB = 90^{\circ}</math>, this means <math>m\angle CEB = 30^{\circ}</math> and the equation of <math>\overline{CE}</math> is <math>y=\frac{\sqrt{3}}{3}</math> (you can figure out that the tangent of 30 degrees gives <math>\frac{\sqrt{3}}{3}</math>). Next, we can find A to be at <math>(0, 5)</math> and B at <math>(5, 0)</math>, so the equation of <math>\overline{AB}</math> is <math>y=-x+5</math>. So we have the system:
 +
 +
<cmath>{y=33xy=x+5</cmath>
 +
 +
By substituting values, we can arrive at <math>\frac{3+\sqrt{3}}{3}x=5</math>, or <math>x=5\cdot\frac{3}{3+\sqrt{3}}=\frac{15}{3+\sqrt{3}}</math>. We multiply <math>x=\frac{15}{3+\sqrt{3}}\cdot\frac{3-\sqrt{3}}{3-\sqrt{3}}=\frac{45-15\sqrt{3}}{6}=\frac{15-5\sqrt{3}}{2}</math>.
 +
 +
Dropping an altitude from E onto <math>\overline{CB}</math>, and calling the intersection point G, we find that <math>\triangle EGB</math> is a 45-45-90 triangle with a leg of <math>\frac{15-5\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{3}=\frac{15\sqrt{3}-15}{6}=\frac{5\sqrt{3}-5}{2}</math>. Thus, <math>EB=\frac{5\sqrt{3}-5}{2}\sqrt{2}=\frac{5\sqrt{6}-5\sqrt{2}}{2}</math>.
 +
 +
Dropping an altitude from C onto <math>\overline{AB}</math>, and calling the intersection point H, we find that <math>CH=\frac{5\sqrt{2}}{2}=BH</math>, and by the theorem of betweenness applied to H, E, and B, we get <math>HE=HB-EB=\frac{5\sqrt{2}}{2}-\frac{5\sqrt{6}-5\sqrt{2}}{2}=\frac{10\sqrt{2}-5\sqrt{6}}{2}</math>.
 +
 +
We are almost done. By symmetry, <math>HD=HE</math>, so to find the area of the triangle CED, we only need to multiply HE by CH, <math>\frac{10\sqrt{2}-5\sqrt{6}}{2}\cdot\frac{5\sqrt{2}}{2}=\frac{100-50\sqrt{3}}{4}=\frac{50-25\sqrt{3}}{2}</math>. This is answer choice <math>\boxed{\textbf{(D) } \frac{50-25\sqrt{3}}{2}}</math>
 +
 +
 +
~JH. L
  
 
==See Also==
 
==See Also==

Revision as of 20:55, 15 October 2022

Problem

The isosceles right triangle $ABC$ has right angle at $C$ and area $12.5$. The rays trisecting $\angle ACB$ intersect $AB$ at $D$ and $E$. What is the area of $\bigtriangleup CDE$?

$\textbf{(A) }\dfrac{5\sqrt{2}}{3}\qquad\textbf{(B) }\dfrac{50\sqrt{3}-75}{4}\qquad\textbf{(C) }\dfrac{15\sqrt{3}}{8}\qquad\textbf{(D) }\dfrac{50-25\sqrt{3}}{2}\qquad\textbf{(E) }\dfrac{25}{6}$

Solution 1 (No Trigonometry)

2015AMC10AProblem19Picture.png

$\triangle ADC$ can be split into a $45-45-90$ right triangle and a $30-60-90$ right triangle by dropping a perpendicular from $D$ to side $AC$. Let $F$ be where that perpendicular intersects $AC$.

Because the side lengths of a $45-45-90$ right triangle are in ratio $a:a:a\sqrt{2}$, $DF = AF$.

Because the side lengths of a $30-60-90$ right triangle are in ratio $a:a\sqrt{3}:2a$ and $AF + FC = 5$, $DF = \frac{5 - AF}{\sqrt{3}}$.

Setting the two equations for $DF$ equal to each other, $AF = \frac{5 - AF}{\sqrt{3}}$.

Solving gives $AF = DF = \frac{5\sqrt{3} - 5}{2}$.

The area of $\triangle ADC = \frac12 \cdot DF \cdot AC = \frac{25\sqrt{3} - 25}{4}$.

$\triangle ADC$ is congruent to $\triangle BEC$, so their areas are equal.

A triangle's area can be written as the sum of the figures that make it up, so $[ABC] = [ADC] + [BEC] + [CDE]$.

$\frac{25}{2} = \frac{25\sqrt{3} - 25}{4} + \frac{25\sqrt{3} - 25}{4} + [CDE]$.

Solving gives $[CDE] = \frac{50 - 25\sqrt{3}}{2}$, so the answer is $\boxed{\textbf{(D) }\frac{50 - 25\sqrt{3}}{2}}$

Note

Another way to get $DF$ is that you assume $AF=DF$ to be equal to $a$, as previously mentioned, and $CF$ is equal to $a\sqrt{3}$. $AF+DF=5=a+a\sqrt{3}$

Solution 2 (Trigonometry)

The area of $\triangle ABC$ is $12.5$, and so the leg length of $45 - 45 - 90$ $\triangle ABC$ is $5.$ Thus, the altitude to hypotenuse $AB$, $CF$, has length $\dfrac{5}{\sqrt{2}}$ by $45 - 45 - 90$ right triangles. Now, it is clear that $\angle{ACD} = \angle{BCE} = 30^\circ$, and so by the Exterior Angle Theorem, $\triangle{CDE}$ is an isosceles $30 - 75 - 75$ triangle. Thus, $DF = CF \tan 15^\circ = \dfrac{5}{\sqrt{2}} (2 - \sqrt{3})$ by the Half-Angle formula, and so the area of $\triangle CDE$ is $DF \cdot CF = \dfrac{25}{2} (2 - \sqrt{3})$. The answer is thus $\boxed{\textbf{(D) } \frac{50 - 25\sqrt{3}}{2}}$

Solution 3 (Analytical Geometry)

Because the area of triangle $ABC$ is $12.5$, and the triangle is right and isosceles, we can quickly see that the leg length of the triangle $ABC$ is 5. If we put the triangle on the coordinate plane, with vertex $C$ at the origin, and the hypotenuse in the first quadrant, we can use slope-intercept form and tangents to get three lines that intersect at the origin, $D$, and $E$. Then, you can use the distance formula to get the length of $DE$. The height is just $\frac{5}{\sqrt{2}}$, so the area is just $DE \cdot \frac{5}{\sqrt{2}} \cdot \frac{1}{2}=\boxed{\textbf{(D) } \frac{50 - 25\sqrt{3}}{2}}$


Solution 4 (Trigonometry)

Just like with Solution 1, we drop a perpendicular from $D$ onto $AC$, splitting it into a $30$-$60$-$90$ triangle and a $45$-$45$-$90$ triangle. We find that $AF=\frac{5\sqrt{3}-5}{2}$.

Now, since $\triangle AEC\cong \triangle BDC$ by ASA, $CE=CD$. Since, $DF=\frac{5\sqrt{3}-5}{2}$, $DC=2\cdot \frac{5\sqrt{3}-5}{2}=5\sqrt{3}-5$. By the sine area formula, $[CDE]=\frac{1}{2}\cdot \sin 30\cdot CD^2=\frac{1}{4}\cdot (100-50\sqrt{3})=\frac{50-25\sqrt{3}}{2}\implies \boxed{\textbf{(D)}}$

Solution 5 (Basic Trigonometry)

Prerequisite knowledge for this solution: the side ratios of a 30-60-90, and 45-45-90 right triangle.


We let point C be the origin. Since $\overline{CD}$ and $\overline{CE}$ trisect $\angle ACB = 90^{\circ}$, this means $m\angle CEB = 30^{\circ}$ and the equation of $\overline{CE}$ is $y=\frac{\sqrt{3}}{3}$ (you can figure out that the tangent of 30 degrees gives $\frac{\sqrt{3}}{3}$). Next, we can find A to be at $(0, 5)$ and B at $(5, 0)$, so the equation of $\overline{AB}$ is $y=-x+5$. So we have the system:

\[\begin{cases}y=\frac{\sqrt{3}}{3}x\\y=-x+5\end{cases}\]

By substituting values, we can arrive at $\frac{3+\sqrt{3}}{3}x=5$, or $x=5\cdot\frac{3}{3+\sqrt{3}}=\frac{15}{3+\sqrt{3}}$. We multiply $x=\frac{15}{3+\sqrt{3}}\cdot\frac{3-\sqrt{3}}{3-\sqrt{3}}=\frac{45-15\sqrt{3}}{6}=\frac{15-5\sqrt{3}}{2}$.

Dropping an altitude from E onto $\overline{CB}$, and calling the intersection point G, we find that $\triangle EGB$ is a 45-45-90 triangle with a leg of $\frac{15-5\sqrt{3}}{2}\cdot\frac{\sqrt{3}}{3}=\frac{15\sqrt{3}-15}{6}=\frac{5\sqrt{3}-5}{2}$. Thus, $EB=\frac{5\sqrt{3}-5}{2}\sqrt{2}=\frac{5\sqrt{6}-5\sqrt{2}}{2}$.

Dropping an altitude from C onto $\overline{AB}$, and calling the intersection point H, we find that $CH=\frac{5\sqrt{2}}{2}=BH$, and by the theorem of betweenness applied to H, E, and B, we get $HE=HB-EB=\frac{5\sqrt{2}}{2}-\frac{5\sqrt{6}-5\sqrt{2}}{2}=\frac{10\sqrt{2}-5\sqrt{6}}{2}$.

We are almost done. By symmetry, $HD=HE$, so to find the area of the triangle CED, we only need to multiply HE by CH, $\frac{10\sqrt{2}-5\sqrt{6}}{2}\cdot\frac{5\sqrt{2}}{2}=\frac{100-50\sqrt{3}}{4}=\frac{50-25\sqrt{3}}{2}$. This is answer choice $\boxed{\textbf{(D) } \frac{50-25\sqrt{3}}{2}}$


~JH. L

See Also

Video Solution:

https://www.youtube.com/watch?v=JWMIsCS0Ksk

2015 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png