Difference between revisions of "2004 AMC 12B Problems/Problem 3"

(New page: == Problem == If <math>x</math> and <math>y</math> are positive integers for which <math>2^x3^y=1296</math>, what is the value of <math>x+y</math>? <math>(\mathrm {A}) 8\qquad (\mathrm {B...)
 
(Solution)
 
(2 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
If <math>x</math> and <math>y</math> are positive integers for which <math>2^x3^y=1296</math>, what is the value of <math>x+y</math>?
 
If <math>x</math> and <math>y</math> are positive integers for which <math>2^x3^y=1296</math>, what is the value of <math>x+y</math>?
  
<math>(\mathrm {A}) 8\qquad (\mathrm {B}) 9 \qquad (\mathrm {C}) 10 \qquad (\mathrm {D}) 11 \qquad (\mathrm {E}) 12</math>
+
<math>(\mathrm {A})\ 8 \qquad (\mathrm {B})\ 9 \qquad (\mathrm {C})\ 10 \qquad (\mathrm {D})\ 11 \qquad (\mathrm {E})\ 12</math>
  
 
== Solution ==
 
== Solution ==
  
 
<math>1296 = 2^4 3^4</math> and <math>4+4=\boxed{8} \Longrightarrow \mathrm{(A)}</math>.
 
<math>1296 = 2^4 3^4</math> and <math>4+4=\boxed{8} \Longrightarrow \mathrm{(A)}</math>.
 +
 +
== Video Solution 1==
 +
https://youtu.be/So54Ar_fxdE
 +
 +
~Education, the Study of Everything
  
 
== See Also ==
 
== See Also ==
 
{{AMC12 box|year=2004|ab=B|num-b=2|num-a=4}}
 
{{AMC12 box|year=2004|ab=B|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Latest revision as of 18:21, 22 October 2022

Problem

If $x$ and $y$ are positive integers for which $2^x3^y=1296$, what is the value of $x+y$?

$(\mathrm {A})\ 8 \qquad (\mathrm {B})\ 9 \qquad (\mathrm {C})\ 10 \qquad (\mathrm {D})\ 11 \qquad (\mathrm {E})\ 12$

Solution

$1296 = 2^4 3^4$ and $4+4=\boxed{8} \Longrightarrow \mathrm{(A)}$.

Video Solution 1

https://youtu.be/So54Ar_fxdE

~Education, the Study of Everything

See Also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png