Difference between revisions of "2001 AIME I Problems/Problem 7"
(cleanup asy etc) |
(→Solution 7) |
||
(33 intermediate revisions by 13 users not shown) | |||
Line 2: | Line 2: | ||
[[Triangle]] <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is [[parallel]] to <math>\overline{BC}</math> and contains the center of the [[incircle|inscribed circle]] of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | [[Triangle]] <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is [[parallel]] to <math>\overline{BC}</math> and contains the center of the [[incircle|inscribed circle]] of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
− | == Solution == | + | __TOC__ |
+ | == Solution 1 == | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | // D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); | ||
+ | D(B--I--C); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>I</math> be the [[incenter]] of <math>\triangle ABC</math>, so that <math>BI</math> and <math>CI</math> are [[angle bisector]]s of <math>\angle ABC</math> and <math>\angle ACB</math> respectively. Then, <math>\angle BID = \angle CBI = \angle DBI,</math> so <math>\triangle BDI</math> is [[Isosceles triangle|isosceles]], and similarly <math>\triangle CEI</math> is isosceles. It follows that <math>DE = DB + EC</math>, so the perimeter of <math>\triangle ADE</math> is <math>AD + AE + DE = AB + AC = 43</math>. Hence, the ratio of the perimeters of <math>\triangle ADE</math> and <math>\triangle ABC</math> is <math>\frac{43}{63}</math>, which is the scale factor between the two similar triangles, and thus <math>DE = \frac{43}{63} \times 20 = \frac{860}{63}</math>. Thus, <math>m + n = \boxed{923}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
<center><asy> | <center><asy> | ||
pointpen = black; pathpen = black+linewidth(0.7); | pointpen = black; pathpen = black+linewidth(0.7); | ||
Line 11: | Line 26: | ||
</asy></center> | </asy></center> | ||
− | The [[semiperimeter]] of <math>ABC</math> is <math>s = \frac{20 + 21 + 22}{2} = \frac{63}{2}</math>. By [[Heron's formula]], the area of the whole triangle is <math>A = \sqrt{s(s-a)(s-b)(s-c)} = \frac{21\sqrt{1311}} | + | The [[semiperimeter]] of <math>ABC</math> is <math>s = \frac{20 + 21 + 22}{2} = \frac{63}{2}</math>. By [[Heron's formula]], the area of the whole triangle is <math>A = \sqrt{s(s-a)(s-b)(s-c)} = \frac{21\sqrt{1311}}{4}</math>. Using the formula <math>A = rs</math>, we find that the [[inradius]] is <math>r = \frac{A}{s} = \frac{\sqrt{1311}}6</math>. Since <math>\triangle ADE \sim \triangle ABC</math>, the ratio of the heights of triangles <math>ADE</math> and <math>ABC</math> is equal to the ratio between sides <math>DE</math> and <math>BC</math>. From <math>A=\frac{1}{2}bh</math>, we find <math>h_{ABC} = \frac{21\sqrt{1311}}{40}</math>. Thus, we have |
<center><math>\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.</math></center> Solving for <math>DE</math> gives <math>DE=\frac{860}{63},</math> so the answer is <math>m+n=\boxed{923}</math>. | <center><math>\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.</math></center> Solving for <math>DE</math> gives <math>DE=\frac{860}{63},</math> so the answer is <math>m+n=\boxed{923}</math>. | ||
+ | |||
+ | |||
+ | |||
+ | Or we have the area of the triangle as <math>S</math>. | ||
+ | Using the ratio of heights to ratio of bases of <math>ADE</math> and <math>ABC</math> | ||
+ | <math>\frac {\frac {2S}{20}-\frac {2S}{63}}{\frac {2S}{20}}= \frac {DE}{BC(20)}</math> | ||
+ | from that it is easy to deduce that <math>DE=\frac{860}{63}</math>. | ||
+ | |||
+ | == Solution 3 ([[mass points]]) == | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | |||
+ | /* construct angle bisectors */ | ||
+ | path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } | ||
+ | D(anglebisector(C,A,B,B--C), d); D(anglebisector(B,C,A,A--B),d); D(anglebisector(C,B,A,A--C),d); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>P</math> be the [[incenter]]; then it is be the intersection of all three [[angle bisector]]s. Draw the bisector <math>AP</math> to where it intersects <math>BC</math>, and name the intersection <math>F</math>. | ||
+ | |||
+ | Using the [[angle bisector theorem]], we know the ratio <math>BF:CF</math> is <math>21:22</math>, thus we shall assign a weight of <math>22</math> to point <math>B</math> and a weight of <math>21</math> to point <math>C</math>, giving <math>F</math> a weight of <math>43</math>. In the same manner, using another bisector, we find that <math>A</math> has a weight of <math>20</math>. So, now we know <math>P</math> has a weight of <math>63</math>, and the ratio of <math>FP:PA</math> is <math>20:43</math>. Therefore, the smaller similar triangle <math>ADE</math> is <math>43/63</math> the height of the original triangle <math>ABC</math>. So, <math>DE</math> is <math>43/63</math> the size of <math>BC</math>. Multiplying this ratio by the length of <math>BC</math>, we find <math>DE</math> is <math>860/63 = m/n</math>. Therefore, <math>m+n=\boxed{923}</math>. | ||
+ | |||
+ | == Solution 4 (Faster) == | ||
+ | |||
+ | More directly than Solution 2, we have <cmath>DE=BC\left(\frac{h_a-r}{h_a}\right)=20\left(1-\frac{r}{\frac{[ABC]}{\frac{BC}{2}}}\right)=20\left(1-\frac{10r}{sr}\right)=20\left(1-\frac{10}{\frac{63}{2}}\right)=\frac{860}{63}\implies \boxed{923}.</cmath> | ||
+ | |||
+ | |||
+ | == Solution 5 == | ||
+ | |||
+ | Diagram borrowed from Solution 3. | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | |||
+ | /* construct angle bisectors */ | ||
+ | path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } | ||
+ | D(anglebisector(C,A,B,B--C), d); D(anglebisector(C,B,A,A--C),d); | ||
+ | </asy></center> | ||
+ | |||
+ | Let the angle bisector of <math>\angle{A}</math> intersects <math>BC</math> at <math>F</math>. | ||
+ | |||
+ | Applying the [[Angle Bisector Theorem]] on <math>\angle{A}</math> we have | ||
+ | <cmath>\frac{AB}{BF}=\frac{AC}{CF}</cmath> | ||
+ | <cmath>BF=BC\cdot(\frac{AB}{AB+AC})</cmath> | ||
+ | <cmath>BF=\frac{420}{43}</cmath> | ||
+ | Since <math>BP</math> is the angle bisector of <math>\angle{B}</math>, we can once again apply the Angle Bisector Theorem on <math>\angle{B}</math> which gives | ||
+ | <cmath>\frac{BA}{AP}=\frac{BF}{FP}</cmath> | ||
+ | <cmath>\frac{AP}{PF}=\frac{AB}{BF}=\frac{41}{20}</cmath> | ||
+ | Since <math>\bigtriangleup ADE\sim\bigtriangleup ABC</math> we have | ||
+ | <cmath>\frac{DE}{BC}=\frac{AP}{AF}</cmath> | ||
+ | <cmath>DE=BC\cdot(\frac{AP}{(\frac{61}{41})\cdot AP})</cmath> | ||
+ | Solving gets <math>DE=\frac{860}{63}</math>. Thus <math>m+n=860+63=\boxed{923}</math>. | ||
+ | |||
+ | ~ Nafer | ||
+ | |||
+ | == Solution 6 == | ||
+ | Let <math>A'</math> be the foot of the altitude from <math>A</math> to <math>\overline {BC}</math> and <math>K</math> be the foot of the altitude from <math>A</math> to <math>\overline{DE}</math>. Evidently, <cmath>\frac{AK}{AA'} = 1- \frac{r}{AA'} = 1 - \frac{T/s}{T/BC}</cmath> where <math>r</math> is the inradius, <math>T = [ABC]</math>, and <math>s</math> is the semiperimeter. So, <cmath>\frac{AK}{AA'} = 1 - \frac{BC}{s} = 1 - \frac{20}{63}= \frac{43}{63}</cmath> Therefore, by similar triangles, we have <math>DE = BC * \frac{AK}{AA'} = 20 * \frac{AK}{AA'}= \boxed{\frac{860}{63}}</math>. | ||
+ | |||
+ | |||
+ | == Solution 7 == | ||
+ | Label <math>P</math> the point the angle bisector of <math>A</math> intersects <math>{BC}</math>. First we find <math>{BP}</math> and <math>{PC}</math>. By the Angle Bisector Theorem, <math>\frac{BP}{PC} = \frac{21}{22}</math> and solving for each using the fact that <math>{BC} = 20</math>, we see that <math>{BP} = \frac{420}{43}</math> and <math>PC = \frac{440}{43}</math>. | ||
+ | |||
+ | Because <math>{AP}</math> is the angle bisector of <math><A</math>, we can simply calculate it using Stewarts, | ||
+ | <cmath> {AP} = 21*22 - \frac{440}{43}\cdot\frac{420}{43}</cmath> | ||
+ | <cmath> {AP} = 21*22 - \frac{440\cdot420}{43^2}</cmath> | ||
+ | |||
+ | Now we can calculate what <math>{AO}</math> is. Using the formula to find the distance from a vertex to the incenter, <math>{AO} = \frac{43}{63} \cdot[21\cdot22 - \frac{420*440}{43^2}] = \frac{43^2\cdot22 - 20\cdot440}{43\cdot3}</math>. | ||
+ | |||
+ | Now because <math>\triangle{APE} ~ \triangle{ABC}</math>, we can find <math>{DE}</math> by <math>\frac{AO}{AP} \cdot 20</math>. Dividing and simplifying, we see that <math>\frac{1}{21}\cdot\frac{43}{3}\cdot20 = \frac{860}{63}</math>. So the answer is <math>\boxed{923}</math> | ||
+ | |||
+ | ~YBSuburbanTea | ||
== See also == | == See also == | ||
Line 18: | Line 110: | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 07:31, 1 December 2022
Problem
Triangle has , and . Points and are located on and , respectively, such that is parallel to and contains the center of the inscribed circle of triangle . Then , where and are relatively prime positive integers. Find .
Contents
Solution 1
Let be the incenter of , so that and are angle bisectors of and respectively. Then, so is isosceles, and similarly is isosceles. It follows that , so the perimeter of is . Hence, the ratio of the perimeters of and is , which is the scale factor between the two similar triangles, and thus . Thus, .
Solution 2
The semiperimeter of is . By Heron's formula, the area of the whole triangle is . Using the formula , we find that the inradius is . Since , the ratio of the heights of triangles and is equal to the ratio between sides and . From , we find . Thus, we have
Solving for gives so the answer is .
Or we have the area of the triangle as . Using the ratio of heights to ratio of bases of and from that it is easy to deduce that .
Solution 3 (mass points)
Let be the incenter; then it is be the intersection of all three angle bisectors. Draw the bisector to where it intersects , and name the intersection .
Using the angle bisector theorem, we know the ratio is , thus we shall assign a weight of to point and a weight of to point , giving a weight of . In the same manner, using another bisector, we find that has a weight of . So, now we know has a weight of , and the ratio of is . Therefore, the smaller similar triangle is the height of the original triangle . So, is the size of . Multiplying this ratio by the length of , we find is . Therefore, .
Solution 4 (Faster)
More directly than Solution 2, we have
Solution 5
Diagram borrowed from Solution 3.
Let the angle bisector of intersects at .
Applying the Angle Bisector Theorem on we have Since is the angle bisector of , we can once again apply the Angle Bisector Theorem on which gives Since we have Solving gets . Thus .
~ Nafer
Solution 6
Let be the foot of the altitude from to and be the foot of the altitude from to . Evidently, where is the inradius, , and is the semiperimeter. So, Therefore, by similar triangles, we have .
Solution 7
Label the point the angle bisector of intersects . First we find and . By the Angle Bisector Theorem, and solving for each using the fact that , we see that and .
Because is the angle bisector of , we can simply calculate it using Stewarts,
Now we can calculate what is. Using the formula to find the distance from a vertex to the incenter, .
Now because , we can find by . Dividing and simplifying, we see that . So the answer is
~YBSuburbanTea
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.