Difference between revisions of "2020 AMC 12B Problems/Problem 22"
m (→Solution 6 (Simple)) |
Countmath1 (talk | contribs) (→Solution 5) |
||
Line 53: | Line 53: | ||
Let the maximum value of the function be <math>m</math>. Then we have <cmath>\frac{(2^t-3t)t}{4^t} = m \implies m2^{2t} - t2^t + 3t^2 = 0.</cmath> | Let the maximum value of the function be <math>m</math>. Then we have <cmath>\frac{(2^t-3t)t}{4^t} = m \implies m2^{2t} - t2^t + 3t^2 = 0.</cmath> | ||
Solving for <math>2^{t}</math>, we see <cmath>2^{t} = \frac{t}{2m} \pm \frac{\sqrt{t^2 - 12mt^2}}{2m} = \frac{t}{2m} \pm \frac{t\sqrt{1 - 12m}}{2m}.</cmath> We see that <math>1 - 12m \geq 0 \implies m \leq \frac{1}{12}.</math> Therefore, the answer is <math>\boxed{\textbf{(C)}\ \frac{1}{12}}</math>. | Solving for <math>2^{t}</math>, we see <cmath>2^{t} = \frac{t}{2m} \pm \frac{\sqrt{t^2 - 12mt^2}}{2m} = \frac{t}{2m} \pm \frac{t\sqrt{1 - 12m}}{2m}.</cmath> We see that <math>1 - 12m \geq 0 \implies m \leq \frac{1}{12}.</math> Therefore, the answer is <math>\boxed{\textbf{(C)}\ \frac{1}{12}}</math>. | ||
+ | |||
+ | ==Solution 6== | ||
+ | |||
+ | Let <math>z=2^t.</math> Then, | ||
+ | |||
+ | <cmath>\frac{\left(2^t-3t\right)t}{4^t}=\frac{\left(z-3t\right)t}{z^2} = \frac{-3t^2+zt}{z^2}.</cmath> | ||
+ | |||
+ | As the numerator is a quadratic in <math>t</math> with a negative leading coefficient, its maximum value occurs at <math>t=\frac{-z}{2\cdot -3}=\frac{z}{6},</math> or when <math>6t=2^t.</math> Therefore, | ||
+ | |||
+ | <cmath>\frac{\left(2^t-3t\right)t}{4^t}=\frac{\left(6t-3t\right)t}{(6t)^2}=\frac{3t^2}{36t^2}=\boxed{\textbf{(C)}\ \frac{1}{12}}.</cmath> | ||
+ | |||
+ | |||
+ | -Benedict T (countmath1) | ||
==Video Solution1== | ==Video Solution1== |
Revision as of 16:25, 22 January 2023
Contents
Problem
What is the maximum value of for real values of
Solution 1
We proceed by using AM-GM. We get . Thus, squaring gives us that . Rembering what we want to find, we divide both sides of the inequality by the positive amount of . We get the maximal values as , and we are done.
Solution 2
Set . Then the expression in the problem can be written as It is easy to see that is attained for some value of between and , thus the maximal value of is .
Solution 3 (Calculus Needed)
We want to maximize . We can use the first derivative test. Use quotient rule to get the following: Therefore, we plug this back into the original equation to get
~awesome1st
Solution 4
First, substitute so that
Notice that
When seen as a function, is a synthesis function that has as its inner function.
If we substitute , the given function becomes a quadratic function that has a maximum value of when .
Now we need to check if can have the value of in the range of real numbers.
In the range of (positive) real numbers, function is a continuous function whose value gets infinitely smaller as gets closer to 0 (as also diverges toward negative infinity in the same condition). When , , which is larger than .
Therefore, we can assume that equals to when is somewhere between 1 and 2 (at least), which means that the maximum value of is .
Solution 5
Let the maximum value of the function be . Then we have Solving for , we see We see that Therefore, the answer is .
Solution 6
Let Then,
As the numerator is a quadratic in with a negative leading coefficient, its maximum value occurs at or when Therefore,
-Benedict T (countmath1)
Video Solution1
~Education, the Study of Everything
Video Solution
Problem starts at 2:10 in this video: https://www.youtube.com/watch?v=5HRSzpdJaX0&t=130s
-MistyMathMusic
See Also
2020 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.