Difference between revisions of "2018 AMC 8 Problems/Problem 7"
Pi is 3.14 (talk | contribs) (→Video Solutions) |
(→Video Solution by OmegaLearn) |
||
Line 9: | Line 9: | ||
20187 mod 8 =_ 3 | 20187 mod 8 =_ 3 | ||
+ | |||
+ | == Video Solution (CRITICAL THINKING!!!)== | ||
+ | https://youtu.be/uTBCTiIJbOY | ||
+ | |||
+ | ~Education, the Study of Everything | ||
==Video Solution by OmegaLearn== | ==Video Solution by OmegaLearn== |
Revision as of 20:16, 29 March 2023
Contents
Problem
The -digit number is divisible by . What is the remainder when this number is divided by ?
Solution
We use the property that the digits of a number must sum to a multiple of if it are divisible by . This means must be divisible by . The only possible value for then must be . Since we are looking for the remainder when divided by , we can ignore the thousands. The remainder when is divided by is .
20187 mod 8 =_ 3
Video Solution (CRITICAL THINKING!!!)
~Education, the Study of Everything
Video Solution by OmegaLearn
https://youtu.be/6xNkyDgIhEE?t=2341
Video Solution
~savannahsolver
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.