ONLINE AMC 8 PREP WITH AOPS
Join top students around the country in our weekend training courses on January 7th, 8th and January 14th, 15th.
VIEW CATALOG

Difference between revisions of "2013 AMC 8 Problems"

(Created page with "==Problem 1== <math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace...")
 
 
(100 intermediate revisions by 44 users not shown)
Line 1: Line 1:
 +
{{AMC8 Problems|year=2013|}}
 
==Problem 1==
 
==Problem 1==
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Danica wants to arrange her model cars in rows with exactly 6 cars in each row. She now has 23 model cars. What is the smallest number of additional cars she must buy in order to be able to arrange all her cars this way?
  
[[2012 AMC 8 Problems/Problem 1|Solution]]
+
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 1|Solution]]
  
 
==Problem 2==
 
==Problem 2==
In the country of East Westmore, statisticians estimate there is a baby born every <math> 8 </math> hours and a death every day. To the nearest hundred, how many people are added to the population of East Westmore each year?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
A sign at the fish market says, "50% off, today only: half-pound packages for just \$3 per package." What is the regular price for a full pound of fish, in dollars? (Assume that there are no deals for bulk)
  
[[2012 AMC 8 Problems/Problem 2|Solution]]
+
<math>\textbf{(A)}\ 6 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 15</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 2|Solution]]
  
 
==Problem 3==
 
==Problem 3==
On February 13 <math>\emph{The Oshkosh Northwester}</math> listed the length of daylight as 10 hours and 24 minutes, the sunrise was <math> 6:57\textsc{am} </math>, and the sunset as <math> 8:15\textsc{pm} </math>. The length of daylight and sunrise were correct, but the sunset was wrong. When did the sun really set?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
 
  
[[2012 AMC 8 Problems/Problem 3|Solution]]
+
What is the value of <math>4 \cdot (-1+2-3+4-5+6-7+\cdots+1000)</math>?
 +
 
 +
<math>\textbf{(A)}\ -10 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 500 \qquad \textbf{(E)}\ 2000</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 3|Solution]]
  
 
==Problem 4==
 
==Problem 4==
Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Eight friends ate at a restaurant and agreed to share the bill equally. Because Judi forgot her money, each of her seven friends paid an extra $2.50 to cover her portion of the total bill. What was the total bill?
 +
 
 +
<math> \textbf{(A)}\ \text{\textdollar}120\qquad\textbf{(B)}\ \text{\textdollar}128\qquad\textbf{(C)}\ \text{\textdollar}140\qquad\textbf{(D)}\ \text{\textdollar}144\qquad\textbf{(E)}\ \text{\textdollar}160 </math>
  
[[2012 AMC 8 Problems/Problem 4|Solution]]
+
[[2013 AMC 8 Problems/Problem 4|Solution]]
  
 
==Problem 5==
 
==Problem 5==
In the diagram, all angles are right angles and the lengths of the sides are given in centimeters. Note the diagram is not drawn to scale. What is , <math> X </math> in centimeters?
 
  
<asy>
 
pair A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R;
 
A=(4,0);
 
B=(7,0);
 
C=(7,4);
 
D=(8,4);
 
E=(8,5);
 
F=(10,5);
 
G=(10,7);
 
H=(7,7);
 
I=(7,8);
 
J=(5,8);
 
K=(5,7);
 
L=(4,7);
 
M=(4,6);
 
N=(0,6);
 
O=(0,5);
 
P=(2,5);
 
Q=(2,3);
 
R=(4,3);
 
draw(A--B--C--D--E--F--G--H--I--J--K--L--M--N--O--P--Q--R--cycle);
 
label("$X$",(3.4,1.5));
 
label("6",(7.6,1.5));
 
label("1",(7.6,3.5));
 
label("1",(8.4,4.6));
 
label("2",(9.4,4.6));
 
label("2",(10.4,6));
 
label("3",(8.4,7.4));
 
label("1",(7.5,7.8));
 
label("2",(6,8.5));
 
label("1",(4.7,7.8));
 
label("1",(4.3,7.5));
 
label("1",(3.5,6.5));
 
label("4",(1.8,6.5));
 
label("1",(-0.5,5.5));
 
label("2",(0.8,4.5));
 
label("2",(1.5,3.8));
 
label("2",(2.8,2.6));</asy>
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Hammie is in the <math>6^\text{th}</math> grade and weighs 106 pounds. Her quadruplet sisters are tiny babies and weigh 5, 5, 6, and 8 pounds. Which is greater, the average (mean) weight of these five children or the median weight, and by how many pounds?
 +
 
 +
<math>\textbf{(A)}\ \text{median, by 60} \qquad \textbf{(B)}\ \text{median, by 20} \qquad \textbf{(C)}\ \text{average, by 5} \qquad \textbf{(D)}\ \text{average, by 15} \qquad \textbf{(E)}\ \text{average, by 20}</math>
  
[[2012 AMC 8 Problems/Problem 5|Solution]]
+
[[2013 AMC 8 Problems/Problem 5|Solution]]
  
 
==Problem 6==
 
==Problem 6==
A rectangular photograph is placed in a frame that forms a border two inches wide on all sides of the photograph. The photograph measures 8 inches high and 10 inches wide. What is the area of the border, in square inches?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
 
  
[[2012 AMC 8 Problems/Problem 6|Solution]]
+
The number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, <math>30 = 6\times5</math>. What is the missing number in the top row?
 +
 
 +
<asy>
 +
unitsize(0.8cm);
 +
draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle);
 +
draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle);
 +
draw((0,0)--(2,0)--(2,2)--(0,2)--cycle);
 +
draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle);
 +
draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle);
 +
draw((1,2)--(1,4)--(3,4)--(3,2)--cycle);
 +
label("600",(0,-1));
 +
label("30",(-1,1));
 +
label("6",(-2,3));
 +
label("5",(0,3));
 +
</asy>
 +
 
 +
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 6|Solution]]
  
 
==Problem 7==
 
==Problem 7==
Isabella must take four 100-point tests in her math class. Her goal is to achieve an average grade of 95 on the tests. Her first two test scores were 97 and 91. After seeing her score on the third test, she realized she can still reach her goal. What is the lowest possible score she could have made on the third test?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 45 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train?
  
[[2012 AMC 8 Problems/Problem 7|Solution]]
+
<math>\textbf{(A)}\ 60 \qquad \textbf{(B)}\ 80 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 120 \qquad \textbf{(E)}\ 140</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 7|Solution]]
  
 
==Problem 8==
 
==Problem 8==
A shop advertises everything is "half price in today's sale." In addition, a coupon gives a 20% discount on sale prices. Using the coupon, the price today represents what percentage off the original price?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
 
[[2012 AMC 8 Problems/Problem 8|Solution]]
+
A fair coin is tossed 3 times. What is the probability of at least two consecutive heads?
 +
 
 +
<math>\textbf{(A)}\ \frac18 \qquad \textbf{(B)}\ \frac14 \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac34</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 8|Solution]]
  
 
==Problem 9==
 
==Problem 9==
The Fort Worth Zoo has a number of two-legged birds and a number of four-legged mammals. On one visit to the zoo, Margie counted 200 heads and 522 legs. How many of the animals that Margie counted were two-legged birds?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
The Incredible Hulk can double the distance it jumps with each succeeding jump. If its first jump is 1 meter, the second jump is 2 meters, the third jump is 4 meters, and so on, then on which jump will it first be able to jump more than 1 kilometer?
 +
 
 +
<math>\textbf{(A)}\ 9^\text{th} \qquad \textbf{(B)}\ 10^\text{th} \qquad \textbf{(C)}\ 11^\text{th} \qquad \textbf{(D)}\ 12^\text{th} \qquad \textbf{(E)}\ 13^\text{th}</math>
  
[[2012 AMC 8 Problems/Problem 9|Solution]]
+
[[2013 AMC 8 Problems/Problem 9|Solution]]
  
 
==Problem 10==
 
==Problem 10==
How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
 
  
[[2012 AMC 8 Problems/Problem 10|Solution]]
+
What is the ratio of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594?
 +
 
 +
<math>\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 165 \qquad \textbf{(C)}\ 330 \qquad \textbf{(D)}\ 625 \qquad \textbf{(E)}\ 660</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 10|Solution]]
  
 
==Problem 11==
 
==Problem 11==
The mean, median, and unique mode of the positive integers 3, 4, 5, 6, 6, 7, and <math>x</math> are all equal. What is the value of <math>x</math>?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Ted's grandfather used his treadmill on 3 days this week. He went 2 miles each day. On Monday he jogged at a speed of 5 miles per hour. He walked at the rate of 3 miles per hour on Wednesday and at 4 miles per hour on Friday. If Grandfather had always walked at 4 miles per hour, he would have spent less time on the treadmill. How many minutes less?
  
[[2012 AMC 8 Problems/Problem 11|Solution]]
+
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 11|Solution]]
  
 
==Problem 12==
 
==Problem 12==
What is the units digit of <math>13^{2012}</math>?
+
At the 2013 Winnebago County Fair a vendor is offering a "fair special" on sandals. If you buy one pair of sandals at the regular price of <math>50</math>, you get a second pair at a 40% discount, and a third pair at half the regular price. Javier took advantage of the "fair special" to buy three pairs of sandals. What percentage of the 150 dollar regular price did he save?
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
<math>\textbf{(A)}\ 25\% \qquad \textbf{(B)}\ 30\% \qquad \textbf{(C)}\ 33\% \qquad \textbf{(D)}\ 40\% \qquad \textbf{(E)}\ 45\%</math>
  
[[2012 AMC 8 Problems/Problem 12|Solution]]
+
[[2013 AMC 8 Problems/Problem 12|Solution]]
  
 
==Problem 13==
 
==Problem 13==
Jamar bought some pencils costing more than a penny each at the school bookstore and paid <math>
 
\textdollar 1.43 </math>. Sharona bought some of the same pencils and paid <math> \textdollar 1.87 </math>. How many more pencils did Sharona buy than Jamar?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
When Clara totaled her scores, she inadvertently reversed the units digit and the tens digit of one score. By which of the following might her incorrect sum have differed from the correct one?
  
[[2012 AMC 8 Problems/Problem 13|Solution]]
+
<math>\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 46 \qquad \textbf{(C)}\ 47 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 49</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 13|Solution]]
  
 
==Problem 14==
 
==Problem 14==
In the BIG N, a middle school football conference, each team plays every other team exactly once. If a total of 21 conference games were played during the 2012 season, how many teams were members of the BIG N conference?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Abe holds 1 green and 1 red jelly bean in his hand. Bob holds 1 green, 1 yellow, and 2 red jelly beans in his hand. Each randomly picks a jelly bean to show the other. What is the probability that the colors match?
  
[[2012 AMC 8 Problems/Problem 14|Solution]]
+
<math>\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac13 \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac23</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 14|Solution]]
  
 
==Problem 15==
 
==Problem 15==
The smallest number greater than 2 that leaves a remainder of 2 when divided by 3, 4, 5, or 6 lies between what numbers?
+
If <math>3^p + 3^4 = 90</math>, <math>2^r + 44 = 76</math>, and <math>5^3 + 6^s = 1421</math>, what is the product of <math>p</math>, <math>r</math>, and <math>s</math>?
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
<math>\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90</math>
  
[[2012 AMC 8 Problems/Problem 15|Solution]]
+
[[2013 AMC 8 Problems/Problem 15|Solution]]
  
 
==Problem 16==
 
==Problem 16==
Each of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 is used only once to make two five-digit numbers so that they have the largest possible sum. Which of the following could be one of the numbers?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
 
  
[[2012 AMC 8 Problems/Problem 16|Solution]]
+
A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of <math>8^\text{th}</math>-graders to <math>6^\text{th}</math>-graders is <math>5:3</math>, and the ratio of <math>8^\text{th}</math>-graders to <math>7^\text{th}</math>-graders is <math>8:5</math>. What is the smallest number of students that could be participating in the project?
 +
 
 +
<math>\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89</math>
 +
 
 +
 
 +
[[2013 AMC 8 Problems/Problem 16|Solution]]
  
 
==Problem 17==
 
==Problem 17==
A square with integer side length is cut into 10 squares, all of which have integer side length and at least 8 of which have area 1. What is the smallest possible value of the length of the side of the original square?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
The sum of six consecutive positive integers is 2013. What is the largest of these six integers?
 +
 
 +
<math>\textbf{(A)}\ 335 \qquad \textbf{(B)}\ 338 \qquad \textbf{(C)}\ 340 \qquad \textbf{(D)}\ 345 \qquad \textbf{(E)}\ 350</math>
  
[[2012 AMC 8 Problems/Problem 17|Solution]]
+
[[2013 AMC 8 Problems/Problem 17|Solution]]
  
 
==Problem 18==
 
==Problem 18==
What is the smallest positive integer that is neither prime nor square and that has no prime factor less than 50?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Isabella uses one-foot cubical blocks to build a rectangular fort that is 12 feet long, 10 feet wide, and 5 feet high. The floor and the four walls are all one foot thick. How many blocks does the fort contain?
 +
 
 +
<asy>
 +
import three;
 +
size(3inch);
 +
currentprojection=orthographic(-8,15,15);
 +
triple A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P;
 +
A = (0,0,0);
 +
B = (0,10,0);
 +
C = (12,10,0);
 +
D = (12,0,0);
 +
E = (0,0,5);
 +
F = (0,10,5);
 +
G = (12,10,5);
 +
H = (12,0,5);
 +
I = (1,1,1);
 +
J = (1,9,1);
 +
K = (11,9,1);
 +
L = (11,1,1);
 +
M = (1,1,5);
 +
N = (1,9,5);
 +
O = (11,9,5);
 +
P = (11,1,5);
 +
//outside box far
 +
draw(surface(A--B--C--D--cycle),white,nolight);
 +
draw(A--B--C--D--cycle);
 +
draw(surface(E--A--D--H--cycle),white,nolight);
 +
draw(E--A--D--H--cycle);
 +
draw(surface(D--C--G--H--cycle),white,nolight);
 +
draw(D--C--G--H--cycle);
 +
//inside box far
 +
draw(surface(I--J--K--L--cycle),white,nolight);
 +
draw(I--J--K--L--cycle);
 +
draw(surface(I--L--P--M--cycle),white,nolight);
 +
draw(I--L--P--M--cycle);
 +
draw(surface(L--K--O--P--cycle),white,nolight);
 +
draw(L--K--O--P--cycle);
 +
//inside box near
 +
draw(surface(I--J--N--M--cycle),white,nolight);
 +
draw(I--J--N--M--cycle);
 +
draw(surface(J--K--O--N--cycle),white,nolight);
 +
draw(J--K--O--N--cycle);
 +
//outside box near
 +
draw(surface(A--B--F--E--cycle),white,nolight);
 +
draw(A--B--F--E--cycle);
 +
draw(surface(B--C--G--F--cycle),white,nolight);
 +
draw(B--C--G--F--cycle);
 +
//top
 +
draw(surface(E--H--P--M--cycle),white,nolight);
 +
draw(surface(E--M--N--F--cycle),white,nolight);
 +
draw(surface(F--N--O--G--cycle),white,nolight);
 +
draw(surface(O--G--H--P--cycle),white,nolight);
 +
draw(M--N--O--P--cycle);
 +
draw(E--F--G--H--cycle);
 +
label("10",(A--B),SE);
 +
label("12",(C--B),SW);
 +
label("5",(F--B),W);</asy>
  
[[2012 AMC 8 Problems/Problem 18|Solution]]
+
<math>\textbf{(A)}\ 204 \qquad \textbf{(B)}\ 280 \qquad \textbf{(C)}\ 320 \qquad \textbf{(D)}\ 340 \qquad \textbf{(E)}\ 600</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 18|Solution]]
  
 
==Problem 19==
 
==Problem 19==
In a jar of red, green, and blue marbles, all but 6 are red marbles, all but 8 are green, and all but 4 are blue. How many marbles are in the jar?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Bridget, Cassie, and Hannah are discussing the results of their last math test. Hannah shows Bridget and Cassie her test, but Bridget and Cassie don't show theirs to anyone. Cassie says, 'I didn't get the lowest score in our class,' and Bridget adds, 'I didn't get the highest score.' What is the ranking of the three girls from the highest score to the lowest score?
  
[[2012 AMC 8 Problems/Problem 19|Solution]]
+
<math>\textbf{(A)}\ \text{Hannah, Cassie, Bridget} \qquad \textbf{(B)}\ \text{Hannah, Bridget, Cassie} \ \qquad \textbf{(C)}\ \text{Cassie, Bridget, Hannah} \qquad \textbf{(D)}\ \text{Cassie, Hannah, Bridget} \ \qquad \textbf{(E)}\ \text{Bridget, Cassie, Hannah}</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 19|Solution]]
  
 
==Problem 20==
 
==Problem 20==
What is the correct ordering of the three numbers <math> \frac{5}{19} </math>, <math> \frac{7}{21} </math>, and <math> \frac{9}{23} </math>, in increasing order?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
A <math>1\times 2</math> rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle?
  
<math> \textbf{(D)}\hspace{.05in}\frac{5}{19}<\frac{9}{23}<\frac{7}{21}\quad\textbf{(E)}\hspace{.05in}\frac{7}{21}<\frac{5}{19}<\frac{9}{23} </math>
+
<math>\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3</math>
  
[[2012 AMC 8 Problems/Problem 20|Solution]]
+
 
 +
[[2013 AMC 8 Problems/Problem 20|Solution]]
  
 
==Problem 21==
 
==Problem 21==
Marla has a large white cube that has an edge of 10 feet. She also has enough green paint to cover 300 square feet. Marla uses all the paint to create a white square centered on each face, surrounded by a green border. What is the area of one of the white squares, in square feet?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Samantha lives 2 blocks west and 1 block south of the southwest corner of City Park. Her school is 2 blocks east and 2 blocks north of the northeast corner of City Park. On school days she bikes on streets to the southwest corner of City Park, then takes a diagonal path through the park to the northeast corner, and then bikes on streets to school. If her route is as short as possible, how many different routes can she take?
  
[[2012 AMC 8 Problems/Problem 21|Solution]]
+
<math>\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 18</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 21|Solution]]
  
 
==Problem 22==
 
==Problem 22==
Let <math> R </math>  be a set of nine distinct integers. Six of the elements are 2, 3, 4, 6, 9, and 14. What is the number of possible values of the median of <math> R </math> ?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Toothpicks are used to make a grid that is 60 toothpicks long and 32 toothpicks wide. How many toothpicks are used altogether?
  
[[2012 AMC 8 Problems/Problem 22|Solution]]
+
<asy>
 +
picture corner;
 +
draw(corner,(5,0)--(35,0));
 +
draw(corner,(0,-5)--(0,-35));
 +
for (int i=0; i<3; ++i)
 +
{
 +
for (int j=0; j>-2; --j)
 +
{
 +
if ((i-j)<3)
 +
{
 +
add(corner,(50i,50j));
 +
}
 +
}
 +
}
 +
draw((5,-100)--(45,-100));
 +
draw((155,0)--(185,0),dotted);
 +
draw((105,-50)--(135,-50),dotted);
 +
draw((100,-55)--(100,-85),dotted);
 +
draw((55,-100)--(85,-100),dotted);
 +
draw((50,-105)--(50,-135),dotted);
 +
draw((0,-105)--(0,-135),dotted);
 +
</asy>
 +
 
 +
<math>\textbf{(A)}\ 1920 \qquad \textbf{(B)}\ 1952 \qquad \textbf{(C)}\ 1980 \qquad \textbf{(D)}\ 2013 \qquad \textbf{(E)}\ 3932</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 22|Solution]]
  
 
==Problem 23==
 
==Problem 23==
An equilateral triangle and a regular hexagon have equal perimeters. If the area of the triangle is 4, what is the area of the hexagon?
 
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
Angle <math>ABC</math> of <math>\triangle ABC</math> is a right angle. The sides of <math>\triangle ABC</math> are the diameters of semicircles as shown. The area of the semicircle on <math>\overline{AB}</math> equals <math>8\pi</math>, and the arc of the semicircle on <math>\overline{AC}</math> has length <math>8.5\pi</math>. What is the radius of the semicircle on <math>\overline{BC}</math>?
  
[[2012 AMC 8 Problems/Problem 23|Solution]]
+
<asy>
 +
import graph;
 +
pair A,B,C;
 +
A=(0,8);
 +
B=(0,0);
 +
C=(15,0);
 +
draw((0,8)..(-4,4)..(0,0)--(0,8));
 +
draw((0,0)..(7.5,-7.5)..(15,0)--(0,0));
 +
real theta = aTan(8/15);
 +
draw(arc((15/2,4),17/2,-theta,180-theta));
 +
draw((0,8)--(15,0));
 +
dot(A);
 +
dot(B);
 +
dot(C);
 +
label("$A$", A, NW);
 +
label("$B$", B, SW);
 +
label("$C$", C, SE);</asy>
 +
 
 +
<math>\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9</math>
 +
 
 +
[[2013 AMC 8 Problems/Problem 23|Solution]]
  
 
==Problem 24==
 
==Problem 24==
A circle of radius 2 is cut into four congruent arcs. The four arcs are joined to form the star figure shown. What is the ratio of the area of the star figure to the area of the original circle?
 
  
 +
Squares <math>ABCD</math>, <math>EFGH</math>, and <math>GHIJ</math> are equal in area. Points <math>C</math> and <math>D</math> are the midpoints of sides <math>IH</math> and <math>HE</math>, respectively. What is the ratio of the area of the shaded pentagon <math>AJICB</math> to the sum of the areas of the three squares?
  
 
<asy>
 
<asy>
size(0,50);
+
pair A,B,C,D,E,F,G,H,I,J;
draw((-1,1)..(-2,2)..(-3,1)..(-2,0)..cycle);
+
 
dot((-1,1));
+
A = (0.5,2);
dot((-2,2));
+
B = (1.5,2);
dot((-3,1));
+
C = (1.5,1);
dot((-2,0));
+
D = (0.5,1);
draw((1,0){up}..{left}(0,1));
+
E = (0,1);
dot((1,0));
+
F = (0,0);
dot((0,1));
+
G = (1,0);
draw((0,1){right}..{up}(1,2));
+
H = (1,1);
dot((1,2));
+
I = (2,1);
draw((1,2){down}..{right}(2,1));
+
J = (2,0);
dot((2,1));
+
draw(A--B);  
draw((2,1){left}..{down}(1,0));</asy>
+
draw(C--B);
 +
draw(D--A)
 +
draw(F--E);  
 +
draw(I--J);
 +
draw(J--F);
 +
draw(G--H);  
 +
draw(A--J);
 +
filldraw(A--B--C--I--J--cycle,grey);
 +
draw(E--I);
 +
label("$A$", A, NW);
 +
label("$B$", B, NE);
 +
label("$C$", C, NE);
 +
label("$D$", D, NW);
 +
label("$E$", E, NW);
 +
label("$F$", F, SW);
 +
label("$G$", G, S);
 +
label("$H$", H, N);
 +
label("$I$", I, NE);
 +
label("$J$", J, SE);
 +
</asy>
  
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
<math> \textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}</math>
  
[[2012 AMC 8 Problems/Problem 24|Solution]]
+
[[2013 AMC 8 Problems/Problem 24|Solution]]
  
 
==Problem 25==
 
==Problem 25==
A square with area 4 is inscribed in a square with area 5, with one vertex of the smaller square on each side of the larger square. A vertex of the smaller square divides a side of the larger square into two segments, one of length <math> a </math>, and the other of length <math> b </math>. What is the value of <math> ab </math>?
+
A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are <math>R_1 = 100</math> inches, <math>R_2 = 60</math> inches, and <math>R_3 = 80</math> inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B?
  
 
<asy>
 
<asy>
draw((0,2)--(2,2)--(2,0)--(0,0)--cycle);
+
pair A,B;
draw((0,0.3)--(0.3,2)--(2,1.7)--(1.7,0)--cycle);
+
size(8cm);
label("$a$",(-0.1,0.15));
+
A=(0,0);
label("$b$",(-0.1,1.15));</asy>
+
B=(480,0);
 +
draw((0,0)--(480,0),linetype("3 4"));
 +
filldraw(circle((8,0),8),black);
 +
draw((0,0)..(100,-100)..(200,0));
 +
draw((200,0)..(260,60)..(320,0));
 +
draw((320,0)..(400,-80)..(480,0));
 +
draw((100,0)--(150,-50sqrt(3)),Arrow(size=4));
 +
draw((260,0)--(290,30sqrt(3)),Arrow(size=4));
 +
draw((400,0)--(440,-40sqrt(3)),Arrow(size=4));
 +
label("$A$", A, SW);
 +
label("$B$", B, SE);
 +
label("$R_1$", (100,-40), W);
 +
label("$R_2$", (260,40), SW);
 +
label("$R_3$", (400,-40), W);</asy>
 +
 
 +
<math> \textbf{(A)}\ 238\pi\qquad\textbf{(B)}\ 240\pi\qquad\textbf{(C)}\ 260\pi\qquad\textbf{(D)}\ 280\pi\qquad\textbf{(E)}\ 500\pi </math>
  
<math> \textbf{(A)}\hspace{.05in}\qquad\textbf{(B)}\hspace{.05in}\qquad\textbf{(C)}\hspace{.05in}\frac{1}2\qquad\textbf{(D)}\hspace{.05in}\qquad\textbf{(E)}\hspace{.05in} </math>
+
[[2013 AMC 8 Problems/Problem 25|Solution]]
  
[[2012 AMC 8 Problems/Problem 25|Solution]]
 
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 19:05, 8 May 2023

2013 AMC 8 (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 1 point for each correct answer. There is no penalty for wrong answers.
  3. No aids are permitted other than plain scratch paper, writing utensils, ruler, and erasers. In particular, graph paper, compass, protractor, calculators, computers, smartwatches, and smartphones are not permitted. Rules
  4. Figures are not necessarily drawn to scale.
  5. You will have 40 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

Danica wants to arrange her model cars in rows with exactly 6 cars in each row. She now has 23 model cars. What is the smallest number of additional cars she must buy in order to be able to arrange all her cars this way?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

Solution

Problem 2

A sign at the fish market says, "50% off, today only: half-pound packages for just $3 per package." What is the regular price for a full pound of fish, in dollars? (Assume that there are no deals for bulk)

$\textbf{(A)}\ 6 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 15$

Solution

Problem 3

What is the value of $4 \cdot (-1+2-3+4-5+6-7+\cdots+1000)$?

$\textbf{(A)}\ -10 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 500 \qquad \textbf{(E)}\ 2000$

Solution

Problem 4

Eight friends ate at a restaurant and agreed to share the bill equally. Because Judi forgot her money, each of her seven friends paid an extra $2.50 to cover her portion of the total bill. What was the total bill?

$\textbf{(A)}\ \text{\textdollar}120\qquad\textbf{(B)}\ \text{\textdollar}128\qquad\textbf{(C)}\ \text{\textdollar}140\qquad\textbf{(D)}\ \text{\textdollar}144\qquad\textbf{(E)}\ \text{\textdollar}160$

Solution

Problem 5

Hammie is in the $6^\text{th}$ grade and weighs 106 pounds. Her quadruplet sisters are tiny babies and weigh 5, 5, 6, and 8 pounds. Which is greater, the average (mean) weight of these five children or the median weight, and by how many pounds?

$\textbf{(A)}\ \text{median, by 60} \qquad \textbf{(B)}\ \text{median, by 20} \qquad \textbf{(C)}\ \text{average, by 5} \qquad \textbf{(D)}\ \text{average, by 15} \qquad \textbf{(E)}\ \text{average, by 20}$

Solution

Problem 6

The number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, $30 = 6\times5$. What is the missing number in the top row?

[asy] unitsize(0.8cm); draw((-1,0)--(1,0)--(1,-2)--(-1,-2)--cycle); draw((-2,0)--(0,0)--(0,2)--(-2,2)--cycle); draw((0,0)--(2,0)--(2,2)--(0,2)--cycle); draw((-3,2)--(-1,2)--(-1,4)--(-3,4)--cycle); draw((-1,2)--(1,2)--(1,4)--(-1,4)--cycle); draw((1,2)--(1,4)--(3,4)--(3,2)--cycle); label("600",(0,-1)); label("30",(-1,1)); label("6",(-2,3)); label("5",(0,3)); [/asy]

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

Solution

Problem 7

Trey and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 45 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train?

$\textbf{(A)}\ 60 \qquad \textbf{(B)}\ 80 \qquad \textbf{(C)}\ 100 \qquad \textbf{(D)}\ 120 \qquad \textbf{(E)}\ 140$

Solution

Problem 8

A fair coin is tossed 3 times. What is the probability of at least two consecutive heads?

$\textbf{(A)}\ \frac18 \qquad \textbf{(B)}\ \frac14 \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac34$

Solution

Problem 9

The Incredible Hulk can double the distance it jumps with each succeeding jump. If its first jump is 1 meter, the second jump is 2 meters, the third jump is 4 meters, and so on, then on which jump will it first be able to jump more than 1 kilometer?

$\textbf{(A)}\ 9^\text{th} \qquad \textbf{(B)}\ 10^\text{th} \qquad \textbf{(C)}\ 11^\text{th} \qquad \textbf{(D)}\ 12^\text{th} \qquad \textbf{(E)}\ 13^\text{th}$

Solution

Problem 10

What is the ratio of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594?

$\textbf{(A)}\ 110 \qquad \textbf{(B)}\ 165 \qquad \textbf{(C)}\ 330 \qquad \textbf{(D)}\ 625 \qquad \textbf{(E)}\ 660$

Solution

Problem 11

Ted's grandfather used his treadmill on 3 days this week. He went 2 miles each day. On Monday he jogged at a speed of 5 miles per hour. He walked at the rate of 3 miles per hour on Wednesday and at 4 miles per hour on Friday. If Grandfather had always walked at 4 miles per hour, he would have spent less time on the treadmill. How many minutes less?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 3 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 5$

Solution

Problem 12

At the 2013 Winnebago County Fair a vendor is offering a "fair special" on sandals. If you buy one pair of sandals at the regular price of $50$, you get a second pair at a 40% discount, and a third pair at half the regular price. Javier took advantage of the "fair special" to buy three pairs of sandals. What percentage of the 150 dollar regular price did he save?

$\textbf{(A)}\ 25\% \qquad \textbf{(B)}\ 30\% \qquad \textbf{(C)}\ 33\% \qquad \textbf{(D)}\ 40\% \qquad \textbf{(E)}\ 45\%$

Solution

Problem 13

When Clara totaled her scores, she inadvertently reversed the units digit and the tens digit of one score. By which of the following might her incorrect sum have differed from the correct one?

$\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 46 \qquad \textbf{(C)}\ 47 \qquad \textbf{(D)}\ 48 \qquad \textbf{(E)}\ 49$

Solution

Problem 14

Abe holds 1 green and 1 red jelly bean in his hand. Bob holds 1 green, 1 yellow, and 2 red jelly beans in his hand. Each randomly picks a jelly bean to show the other. What is the probability that the colors match?

$\textbf{(A)}\ \frac14 \qquad \textbf{(B)}\ \frac13 \qquad \textbf{(C)}\ \frac38 \qquad \textbf{(D)}\ \frac12 \qquad \textbf{(E)}\ \frac23$

Solution

Problem 15

If $3^p + 3^4 = 90$, $2^r + 44 = 76$, and $5^3 + 6^s = 1421$, what is the product of $p$, $r$, and $s$?

$\textbf{(A)}\ 27 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 70 \qquad \textbf{(E)}\ 90$

Solution

Problem 16

A number of students from Fibonacci Middle School are taking part in a community service project. The ratio of $8^\text{th}$-graders to $6^\text{th}$-graders is $5:3$, and the ratio of $8^\text{th}$-graders to $7^\text{th}$-graders is $8:5$. What is the smallest number of students that could be participating in the project?

$\textbf{(A)}\ 16 \qquad \textbf{(B)}\ 40 \qquad \textbf{(C)}\ 55 \qquad \textbf{(D)}\ 79 \qquad \textbf{(E)}\ 89$


Solution

Problem 17

The sum of six consecutive positive integers is 2013. What is the largest of these six integers?

$\textbf{(A)}\ 335 \qquad \textbf{(B)}\ 338 \qquad \textbf{(C)}\ 340 \qquad \textbf{(D)}\ 345 \qquad \textbf{(E)}\ 350$

Solution

Problem 18

Isabella uses one-foot cubical blocks to build a rectangular fort that is 12 feet long, 10 feet wide, and 5 feet high. The floor and the four walls are all one foot thick. How many blocks does the fort contain?

[asy] import three; size(3inch); currentprojection=orthographic(-8,15,15); triple A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P; A = (0,0,0); B = (0,10,0); C = (12,10,0); D = (12,0,0); E = (0,0,5); F = (0,10,5); G = (12,10,5); H = (12,0,5); I = (1,1,1); J = (1,9,1); K = (11,9,1); L = (11,1,1); M = (1,1,5); N = (1,9,5); O = (11,9,5); P = (11,1,5); //outside box far draw(surface(A--B--C--D--cycle),white,nolight); draw(A--B--C--D--cycle); draw(surface(E--A--D--H--cycle),white,nolight); draw(E--A--D--H--cycle); draw(surface(D--C--G--H--cycle),white,nolight); draw(D--C--G--H--cycle); //inside box far draw(surface(I--J--K--L--cycle),white,nolight); draw(I--J--K--L--cycle); draw(surface(I--L--P--M--cycle),white,nolight); draw(I--L--P--M--cycle); draw(surface(L--K--O--P--cycle),white,nolight); draw(L--K--O--P--cycle); //inside box near draw(surface(I--J--N--M--cycle),white,nolight); draw(I--J--N--M--cycle); draw(surface(J--K--O--N--cycle),white,nolight); draw(J--K--O--N--cycle); //outside box near draw(surface(A--B--F--E--cycle),white,nolight); draw(A--B--F--E--cycle); draw(surface(B--C--G--F--cycle),white,nolight); draw(B--C--G--F--cycle); //top draw(surface(E--H--P--M--cycle),white,nolight); draw(surface(E--M--N--F--cycle),white,nolight); draw(surface(F--N--O--G--cycle),white,nolight); draw(surface(O--G--H--P--cycle),white,nolight); draw(M--N--O--P--cycle); draw(E--F--G--H--cycle); label("10",(A--B),SE); label("12",(C--B),SW); label("5",(F--B),W);[/asy]

$\textbf{(A)}\ 204 \qquad \textbf{(B)}\ 280 \qquad \textbf{(C)}\ 320 \qquad \textbf{(D)}\ 340 \qquad \textbf{(E)}\ 600$

Solution

Problem 19

Bridget, Cassie, and Hannah are discussing the results of their last math test. Hannah shows Bridget and Cassie her test, but Bridget and Cassie don't show theirs to anyone. Cassie says, 'I didn't get the lowest score in our class,' and Bridget adds, 'I didn't get the highest score.' What is the ranking of the three girls from the highest score to the lowest score?

$\textbf{(A)}\ \text{Hannah, Cassie, Bridget} \qquad \textbf{(B)}\ \text{Hannah, Bridget, Cassie} \\ \qquad \textbf{(C)}\ \text{Cassie, Bridget, Hannah} \qquad \textbf{(D)}\ \text{Cassie, Hannah, Bridget} \\ \qquad \textbf{(E)}\ \text{Bridget, Cassie, Hannah}$

Solution

Problem 20

A $1\times 2$ rectangle is inscribed in a semicircle with longer side on the diameter. What is the area of the semicircle?

$\textbf{(A)}\ \frac\pi2 \qquad \textbf{(B)}\ \frac{2\pi}3 \qquad \textbf{(C)}\ \pi \qquad \textbf{(D)}\ \frac{4\pi}3 \qquad \textbf{(E)}\ \frac{5\pi}3$


Solution

Problem 21

Samantha lives 2 blocks west and 1 block south of the southwest corner of City Park. Her school is 2 blocks east and 2 blocks north of the northeast corner of City Park. On school days she bikes on streets to the southwest corner of City Park, then takes a diagonal path through the park to the northeast corner, and then bikes on streets to school. If her route is as short as possible, how many different routes can she take?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 18$

Solution

Problem 22

Toothpicks are used to make a grid that is 60 toothpicks long and 32 toothpicks wide. How many toothpicks are used altogether?

[asy] picture corner; draw(corner,(5,0)--(35,0)); draw(corner,(0,-5)--(0,-35)); for (int i=0; i<3; ++i) { for (int j=0; j>-2; --j) { if ((i-j)<3) { add(corner,(50i,50j)); } } } draw((5,-100)--(45,-100)); draw((155,0)--(185,0),dotted); draw((105,-50)--(135,-50),dotted); draw((100,-55)--(100,-85),dotted); draw((55,-100)--(85,-100),dotted); draw((50,-105)--(50,-135),dotted); draw((0,-105)--(0,-135),dotted); [/asy]

$\textbf{(A)}\ 1920 \qquad \textbf{(B)}\ 1952 \qquad \textbf{(C)}\ 1980 \qquad \textbf{(D)}\ 2013 \qquad \textbf{(E)}\ 3932$

Solution

Problem 23

Angle $ABC$ of $\triangle ABC$ is a right angle. The sides of $\triangle ABC$ are the diameters of semicircles as shown. The area of the semicircle on $\overline{AB}$ equals $8\pi$, and the arc of the semicircle on $\overline{AC}$ has length $8.5\pi$. What is the radius of the semicircle on $\overline{BC}$?

[asy] import graph; pair A,B,C; A=(0,8); B=(0,0); C=(15,0); draw((0,8)..(-4,4)..(0,0)--(0,8)); draw((0,0)..(7.5,-7.5)..(15,0)--(0,0)); real theta = aTan(8/15); draw(arc((15/2,4),17/2,-theta,180-theta)); draw((0,8)--(15,0)); dot(A); dot(B); dot(C); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE);[/asy]

$\textbf{(A)}\ 7 \qquad \textbf{(B)}\ 7.5 \qquad \textbf{(C)}\ 8 \qquad \textbf{(D)}\ 8.5 \qquad \textbf{(E)}\ 9$

Solution

Problem 24

Squares $ABCD$, $EFGH$, and $GHIJ$ are equal in area. Points $C$ and $D$ are the midpoints of sides $IH$ and $HE$, respectively. What is the ratio of the area of the shaded pentagon $AJICB$ to the sum of the areas of the three squares?

[asy] pair A,B,C,D,E,F,G,H,I,J;  A = (0.5,2); B = (1.5,2); C = (1.5,1); D = (0.5,1); E = (0,1); F = (0,0); G = (1,0); H = (1,1); I = (2,1); J = (2,0);  draw(A--B);  draw(C--B);  draw(D--A);   draw(F--E);  draw(I--J);  draw(J--F);  draw(G--H);  draw(A--J);  filldraw(A--B--C--I--J--cycle,grey); draw(E--I); label("$A$", A, NW); label("$B$", B, NE); label("$C$", C, NE); label("$D$", D, NW); label("$E$", E, NW); label("$F$", F, SW); label("$G$", G, S); label("$H$", H, N); label("$I$", I, NE); label("$J$", J, SE); [/asy]


$\textbf{(A)}\hspace{.05in}\frac{1}{4}\qquad\textbf{(B)}\hspace{.05in}\frac{7}{24}\qquad\textbf{(C)}\hspace{.05in}\frac{1}{3}\qquad\textbf{(D)}\hspace{.05in}\frac{3}{8}\qquad\textbf{(E)}\hspace{.05in}\frac{5}{12}$

Solution

Problem 25

A ball with diameter 4 inches starts at point A to roll along the track shown. The track is comprised of 3 semicircular arcs whose radii are $R_1 = 100$ inches, $R_2 = 60$ inches, and $R_3 = 80$ inches, respectively. The ball always remains in contact with the track and does not slip. What is the distance the center of the ball travels over the course from A to B?

[asy] pair A,B; size(8cm); A=(0,0); B=(480,0); draw((0,0)--(480,0),linetype("3 4")); filldraw(circle((8,0),8),black); draw((0,0)..(100,-100)..(200,0)); draw((200,0)..(260,60)..(320,0)); draw((320,0)..(400,-80)..(480,0)); draw((100,0)--(150,-50sqrt(3)),Arrow(size=4)); draw((260,0)--(290,30sqrt(3)),Arrow(size=4)); draw((400,0)--(440,-40sqrt(3)),Arrow(size=4)); label("$A$", A, SW); label("$B$", B, SE); label("$R_1$", (100,-40), W); label("$R_2$", (260,40), SW); label("$R_3$", (400,-40), W);[/asy]

$\textbf{(A)}\ 238\pi\qquad\textbf{(B)}\ 240\pi\qquad\textbf{(C)}\ 260\pi\qquad\textbf{(D)}\ 280\pi\qquad\textbf{(E)}\ 500\pi$

Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png