Difference between revisions of "2002 AMC 12A Problems/Problem 22"

(Solution)
 
(4 intermediate revisions by 3 users not shown)
Line 29: Line 29:
 
==Solution==
 
==Solution==
  
Clearly <math>BC=5</math> and <math>AC=5\sqrt{3}</math>. Choose a <math>P'</math> and get a corresponding <math>D'</math> such that <math>BD'= 5\sqrt{2}</math> and <math>AD'=5</math>. For <math> BD > 5\sqrt2 </math> we need <math>CD>5</math>, creating an isoclese right triangle with hyptonuse <math>5\sqrt {2}</math> . Thus the point <math>P</math> may only lie in the triangle <math>ABD'</math>. The probability of it doing so is the ratio of areas of <math>ABD'</math> to <math>ABC</math>, or equivalently, the ratio of <math>AD'</math> to <math>AC</math> because the triangles have identical altitudes when taking <math>AD'</math> and <math>AC</math> as bases. This ratio is equal to <math>\frac{AC-BD'}{AC}=1-\frac{BD'}{AC}=1-\frac{5}{5\sqrt{3}}=1-\frac{\sqrt{3}}{3}= \frac{3-\sqrt{3}}{3}</math>. Thus the answer is <math>\boxed{C}</math>.
+
Clearly <math>BC=5</math> and <math>AC=5\sqrt{3}</math>. Choose a <math>P'</math> and get a corresponding <math>D'</math> such that <math>BD'= 5\sqrt{2}</math> and <math>CD'=5</math>. For <math> BD > 5\sqrt2 </math> we need <math>CD>5</math>, creating an isosceles right triangle with hypotenuse <math>5\sqrt {2}</math> . Thus the point <math>P</math> may only lie in the triangle <math>ABD'</math>. The probability of it doing so is the ratio of areas of <math>ABD'</math> to <math>ABC</math>, or equivalently, the ratio of <math>AD'</math> to <math>AC</math> because the triangles have identical altitudes when taking <math>AD'</math> and <math>AC</math> as bases. This ratio is equal to <math>\frac{AC-CD'}{AC}=1-\frac{CD'}{AC}=1-\frac{5}{5\sqrt{3}}=1-\frac{\sqrt{3}}{3}= \frac{3-\sqrt{3}}{3}</math>. Thus the answer is <math>\boxed{C}</math>.
 +
 
 +
== Video Solution ==
 +
https://youtu.be/WH38DzdClKM
  
 
==See Also==
 
==See Also==

Latest revision as of 10:11, 18 July 2023

Problem

Triangle $ABC$ is a right triangle with $\angle ACB$ as its right angle, $m\angle ABC = 60^\circ$ , and $AB = 10$. Let $P$ be randomly chosen inside $ABC$ , and extend $\overline{BP}$ to meet $\overline{AC}$ at $D$. What is the probability that $BD > 5\sqrt2$?

[asy] import math;  unitsize(4mm);  defaultpen(fontsize(8pt)+linewidth(0.7));  dotfactor=4;   pair A=(10,0);  pair C=(0,0);  pair B=(0,10.0/sqrt(3));  pair P=(2,2);  pair D=extension(A,C,B,P);   draw(A--C--B--cycle);  draw(B--D);  dot(P);  label("A",A,S);  label("D",D,S);  label("C",C,S);  label("P",P,NE);  label("B",B,N);[/asy]


$\textbf{(A)}\ \frac{2-\sqrt2}{2}\qquad\textbf{(B)}\ \frac{1}{3}\qquad\textbf{(C)}\ \frac{3-\sqrt3}{3}\qquad\textbf{(D)}\ \frac{1}{2}\qquad\textbf{(E)}\ \frac{5-\sqrt5}{5}$

Solution

Clearly $BC=5$ and $AC=5\sqrt{3}$. Choose a $P'$ and get a corresponding $D'$ such that $BD'= 5\sqrt{2}$ and $CD'=5$. For $BD > 5\sqrt2$ we need $CD>5$, creating an isosceles right triangle with hypotenuse $5\sqrt {2}$ . Thus the point $P$ may only lie in the triangle $ABD'$. The probability of it doing so is the ratio of areas of $ABD'$ to $ABC$, or equivalently, the ratio of $AD'$ to $AC$ because the triangles have identical altitudes when taking $AD'$ and $AC$ as bases. This ratio is equal to $\frac{AC-CD'}{AC}=1-\frac{CD'}{AC}=1-\frac{5}{5\sqrt{3}}=1-\frac{\sqrt{3}}{3}= \frac{3-\sqrt{3}}{3}$. Thus the answer is $\boxed{C}$.

Video Solution

https://youtu.be/WH38DzdClKM

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png