Difference between revisions of "2013 AIME I Problems/Problem 5"
m (→Solution 1) |
m |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | __TOC__ | ||
+ | |||
== Problem == | == Problem == | ||
The real root of the equation <math>8x^3 - 3x^2 - 3x - 1 = 0</math> can be written in the form <math>\frac{\sqrt[3]a + \sqrt[3]b + 1}{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers. Find <math>a+b+c</math>. | The real root of the equation <math>8x^3 - 3x^2 - 3x - 1 = 0</math> can be written in the form <math>\frac{\sqrt[3]a + \sqrt[3]b + 1}{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers. Find <math>a+b+c</math>. | ||
− | |||
== Solution 1 == | == Solution 1 == | ||
Line 7: | Line 8: | ||
== Solution 2 == | == Solution 2 == | ||
− | Let <math>r</math> be the real root of the given [[polynomial]]. Now define the cubic polynomial <math>Q(x)=-x^3-3x^2-3x+8</math>. Note that <math>1/r</math> must be a root of <math>Q</math>. However we can simplify <math>Q</math> as <math>Q(x)=9-(x+1)^3</math>, so we must have that <math>(\frac{1}{r}+1)^3=9</math>. Thus <math>\frac{1}{r}=\sqrt[3]{9}-1</math>, and <math>r=\frac{1}{\sqrt[3]{9}-1}</math>. We can then multiply the numerator and denominator of <math>r</math> by <math>\sqrt[3]{81}+\sqrt[3]{9}+1</math> to rationalize the denominator, and we therefore have <math>r=\frac{\sqrt[3]{81}+\sqrt[3]{9}+1}{8}</math>, and the answer is <math>\boxed{ | + | Let <math>r</math> be the real root of the given [[polynomial]]. Now define the cubic polynomial <math>Q(x)=-x^3-3x^2-3x+8</math>. Note that <math>1/r</math> must be a root of <math>Q</math>. However we can simplify <math>Q</math> as <math>Q(x)=9-(x+1)^3</math>, so we must have that <math>(\frac{1}{r}+1)^3=9</math>. Thus <math>\frac{1}{r}=\sqrt[3]{9}-1</math>, and <math>r=\frac{1}{\sqrt[3]{9}-1}</math>. We can then multiply the numerator and denominator of <math>r</math> by <math>\sqrt[3]{81}+\sqrt[3]{9}+1</math> to rationalize the denominator, and we therefore have <math>r=\frac{\sqrt[3]{81}+\sqrt[3]{9}+1}{8}</math>, and the answer is <math>\boxed{98}</math>. |
== Solution 3 == | == Solution 3 == |
Latest revision as of 20:11, 27 August 2023
Contents
[hide]Problem
The real root of the equation can be written in the form , where , , and are positive integers. Find .
Solution 1
We note that . Therefore, we have that , so it follows that . Solving for yields , so the answer is .
Solution 2
Let be the real root of the given polynomial. Now define the cubic polynomial . Note that must be a root of . However we can simplify as , so we must have that . Thus , and . We can then multiply the numerator and denominator of by to rationalize the denominator, and we therefore have , and the answer is .
Solution 3
It is clear that for the algebraic degree of to be that there exists some cubefree integer and positive integers such that and (it is possible that , but then the problem wouldn't ask for both an and ). Let be the automorphism over which sends and which sends (note : is a cubic root of unity).
Letting be the root, we clearly we have by Vieta's formulas. Thus it follows . Now, note that is a root of . Thus so . Checking the non-cubicroot dimension part, we get so it follows that .
Solution 4
We have Therefore We have We will find so that the equation is equivalent to the original one. Let Easily, and So .
Video Solution
https://www.youtube.com/watch?v=9way8JrtD04&t=240s
See Also
2013 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.