Difference between revisions of "2018 AMC 8 Problems/Problem 10"

(Video Solution)
(Video Solution by OmegaLearn)
 
(3 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
== Solution ==
 
== Solution ==
 
The sum of the reciprocals is <math>\frac{1}{1} + \frac{1}{2} + \frac{1}{4}= \frac{7}{4}</math>. Their average is <math>\frac{7}{12}</math>. Taking the reciprocal of this gives <math>\boxed{\textbf{(C) }\frac{12}{7}}</math>.
 
The sum of the reciprocals is <math>\frac{1}{1} + \frac{1}{2} + \frac{1}{4}= \frac{7}{4}</math>. Their average is <math>\frac{7}{12}</math>. Taking the reciprocal of this gives <math>\boxed{\textbf{(C) }\frac{12}{7}}</math>.
 +
 +
== Video Solution (CRITICAL THINKING!!!)==
 +
https://youtu.be/v-ZooJaqrWA
 +
 +
~Education, the Study of Everything
  
 
== Video Solution by OmegaLearn ==
 
== Video Solution by OmegaLearn ==
 
https://youtu.be/TkZvMa30Juo?t=2935
 
https://youtu.be/TkZvMa30Juo?t=2935
  
~ pi_is_3.14
+
~ pi_is_3.141592653589793238462643383279502884197
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 17:35, 25 December 2023

Problem

The harmonic mean of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?

$\textbf{(A) }\frac{3}{7}\qquad\textbf{(B) }\frac{7}{12}\qquad\textbf{(C) }\frac{12}{7}\qquad\textbf{(D) }\frac{7}{4}\qquad \textbf{(E) }\frac{7}{3}$

Solution

The sum of the reciprocals is $\frac{1}{1} + \frac{1}{2} + \frac{1}{4}= \frac{7}{4}$. Their average is $\frac{7}{12}$. Taking the reciprocal of this gives $\boxed{\textbf{(C) }\frac{12}{7}}$.

Video Solution (CRITICAL THINKING!!!)

https://youtu.be/v-ZooJaqrWA

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/TkZvMa30Juo?t=2935

~ pi_is_3.141592653589793238462643383279502884197

Video Solution

https://youtu.be/PA9X-2xLuxY

~savannahsolver

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png