Difference between revisions of "2009 AMC 10A Problems/Problem 10"
Idk12345678 (talk | contribs) |
|||
(6 intermediate revisions by 5 users not shown) | |||
Line 53: | Line 53: | ||
== Solution 2 == | == Solution 2 == | ||
− | For those looking for a dumber solution, we can use Pythagoras and manipulation of area formulas | + | For those looking for a dumber solution, we can use Pythagoras and manipulation of area formulas to solve the problem. |
Assume the length of <math>BD</math> is equal to <math>h</math>. Then, by Pythagoras, we have, | Assume the length of <math>BD</math> is equal to <math>h</math>. Then, by Pythagoras, we have, | ||
Line 60: | Line 60: | ||
<cmath>BC^2 = h^2 + 16 \Rightarrow BC = \sqrt{h^2 + 16}</cmath> | <cmath>BC^2 = h^2 + 16 \Rightarrow BC = \sqrt{h^2 + 16}</cmath> | ||
− | Then, by area formulas, we know | + | Then, by area formulas, we know: |
<cmath>\frac{1}{2}\sqrt{(h^2+9)(h^2+16)} = \frac{1}{2}(7)(h)</cmath> | <cmath>\frac{1}{2}\sqrt{(h^2+9)(h^2+16)} = \frac{1}{2}(7)(h)</cmath> | ||
− | Squaring and solving the | + | Squaring and solving the above equation yields our solution that <math>h^2 = 12 \Rightarrow h = 2\sqrt{3}.</math> Since the area of the triangle is half of this quantity multiplied by the base, we have |
<cmath>\text{area} = \frac{1}{2}(7)(2\sqrt{3})\Rightarrow \boxed{7\sqrt{3}}</cmath> | <cmath>\text{area} = \frac{1}{2}(7)(2\sqrt{3})\Rightarrow \boxed{7\sqrt{3}}</cmath> | ||
Line 98: | Line 98: | ||
</asy> | </asy> | ||
~Bran_Qin | ~Bran_Qin | ||
− | == Video Solution == | + | |
+ | ===Solution 4 (Fakesolve)/Answer Choices=== | ||
+ | The area of the triangle is <math>\frac{7x}{2}</math>. We want to fine what <math>x</math> is. Now, we try each answer choice. | ||
+ | |||
+ | <math>A): 4 \sqrt{3}</math>. I am too lazy to go over this, but we immediately see that this is very improbably due to the area being <math>\frac{7x}{2}</math>. This does not work. | ||
+ | <math>B): 7 \sqrt{3}</math>. This is promising. This means that <math>x = 2\sqrt{3}</math>. Now, applying Pythagorean Theorem, we have the vertical sides is <math>\sqrt {21}</math> and the horizontal side is <math>\sqrt {28}</math>. Multiplying these and dividing by <math>2</math> indeed gives us <math>7 \sqrt {3}</math> as desired. Therefore, the answer is <math>\boxed{7 \sqrt{3}}</math> | ||
+ | |||
+ | ~Arcticturn | ||
+ | |||
+ | ===Solution 5=== | ||
+ | Let <math>\overline{BD} = x</math>, and <math>\angle ABD = \theta</math>. Since <math>m\angle ABC = 90, DBC = 90 - \theta</math>. <math>\tan{\theta} = \frac{3}{x}</math>, and <math>\tan{90-\theta} = \frac{4}{x}</math>. Using trig identities, we can simplify the second one to <math>\cot{\theta} = \frac{4}{x}</math>. Let <math>y = \tan{\theta}</math>. We get <math>xy = 3</math>, and using the fact that <math>\cot{a} = \frac{1}{\tan{a}}</math>, <math>\frac{x}{y} = 4</math>. Solving for x and y(using substitution), we get <math>y^2 = \frac{3}{4}</math>. We could substitute back in and solve, but there is an easier way. Squaring <math>xy = 3</math>, we get <math>x^2y^2 = 9</math>. Since we know <math>y^2 = \frac{3}{4}</math>, <math>x = \sqrt{12}</math>. Using the Pythagorean Theorem in the original triangle, we get the legs of the triangle to be <math>\sqrt{9+x^2}</math> and <math>\sqrt{16+x^2}</math>. Putting in <math>x</math>, we get the equation for the area, which is <math>\frac{\sqrt{28} \cdot \sqrt{21}}{2} = \frac{14\sqrt{2}}{2} = \boxed{\textbf{(B) } 7\sqrt{3}}</math> | ||
+ | |||
+ | ~idk12345678 | ||
+ | |||
+ | == Video Solution by OmegaLearn== | ||
https://youtu.be/4_x1sgcQCp4?t=1195 | https://youtu.be/4_x1sgcQCp4?t=1195 | ||
Latest revision as of 17:57, 30 April 2024
Contents
Problem
Triangle has a right angle at . Point is the foot of the altitude from , , and . What is the area of ?
Solution 1
It is a well-known fact that in any right triangle with the right angle at and the foot of the altitude from onto we have . (See below for a proof.) Then , and the area of the triangle is .
Proof: Consider the Pythagorean theorem for each of the triangles , , and . We get:
- .
Substituting equations 2 and 3 into the left hand side of equation 1, we get .
Alternatively, note that .
Solution 2
For those looking for a dumber solution, we can use Pythagoras and manipulation of area formulas to solve the problem.
Assume the length of is equal to . Then, by Pythagoras, we have,
Then, by area formulas, we know:
Squaring and solving the above equation yields our solution that Since the area of the triangle is half of this quantity multiplied by the base, we have
Solution 3 (Power of a point)
Draw the circumcircle of the . Because is a right angle triangle, AC is the diameter of the circumcircle. By applying Power of a Point Theorem, we can have and . Then we have
~Bran_Qin
Solution 4 (Fakesolve)/Answer Choices
The area of the triangle is . We want to fine what is. Now, we try each answer choice.
. I am too lazy to go over this, but we immediately see that this is very improbably due to the area being . This does not work. . This is promising. This means that . Now, applying Pythagorean Theorem, we have the vertical sides is and the horizontal side is . Multiplying these and dividing by indeed gives us as desired. Therefore, the answer is
~Arcticturn
Solution 5
Let , and . Since . , and . Using trig identities, we can simplify the second one to . Let . We get , and using the fact that , . Solving for x and y(using substitution), we get . We could substitute back in and solve, but there is an easier way. Squaring , we get . Since we know , . Using the Pythagorean Theorem in the original triangle, we get the legs of the triangle to be and . Putting in , we get the equation for the area, which is
~idk12345678
Video Solution by OmegaLearn
https://youtu.be/4_x1sgcQCp4?t=1195
~ pi_is_3.14
See Also
2009 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.