Difference between revisions of "2018 AMC 8 Problems/Problem 7"

(Created page with "==Problem 7== The <math>5</math>-digit number <math>\underline{2}</math> <math>\underline{0}</math> <math>\underline{1}</math> <math>\underline{8}</math> <math>\underline{U}</...")
 
m (Solution)
 
(18 intermediate revisions by 11 users not shown)
Line 1: Line 1:
==Problem 7==
+
==Problem==
 
The <math>5</math>-digit number <math>\underline{2}</math> <math>\underline{0}</math> <math>\underline{1}</math> <math>\underline{8}</math> <math>\underline{U}</math> is divisible by <math>9</math>. What is the remainder when this number is divided by <math>8</math>?
 
The <math>5</math>-digit number <math>\underline{2}</math> <math>\underline{0}</math> <math>\underline{1}</math> <math>\underline{8}</math> <math>\underline{U}</math> is divisible by <math>9</math>. What is the remainder when this number is divided by <math>8</math>?
  
 
<math>\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7</math>
 
<math>\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7</math>
 +
 +
==Solution==
 +
 +
We use the property that the digits of a number must sum to a multiple of <math>9</math> if it are divisible by <math>9</math>. This means <math>2+0+1+8+U</math> must be divisible by <math>9</math>. The only possible value for <math>U</math> then must be <math>7</math>. Since we are looking for the remainder when divided by <math>8</math>, we can ignore the thousands. The remainder when <math>187</math> is divided by <math>8</math> is <math>\boxed{\textbf{(B) }3}</math>.
 +
 +
If you got stuck on this problem, refer to AOPS Number Theory. You're smart.
 +
 +
-InterstellerApex, Nivaar
 +
 +
== Video Solution (CRITICAL THINKING!!!)==
 +
https://youtu.be/uTBCTiIJbOY
 +
 +
~Education, the Study of Everything
 +
 +
==Video Solution by OmegaLearn==
 +
https://youtu.be/6xNkyDgIhEE?t=2341
 +
 +
==Video Solution==
 +
 +
https://youtu.be/doHZiAT36BY
 +
 +
~savannahsolver
 +
 +
==See Also==
 +
{{AMC8 box|year=2018|num-b=6|num-a=8}}
 +
 +
{{MAA Notice}}

Latest revision as of 16:17, 5 June 2024

Problem

The $5$-digit number $\underline{2}$ $\underline{0}$ $\underline{1}$ $\underline{8}$ $\underline{U}$ is divisible by $9$. What is the remainder when this number is divided by $8$?

$\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }6\qquad\textbf{(E) }7$

Solution

We use the property that the digits of a number must sum to a multiple of $9$ if it are divisible by $9$. This means $2+0+1+8+U$ must be divisible by $9$. The only possible value for $U$ then must be $7$. Since we are looking for the remainder when divided by $8$, we can ignore the thousands. The remainder when $187$ is divided by $8$ is $\boxed{\textbf{(B) }3}$.

If you got stuck on this problem, refer to AOPS Number Theory. You're smart.

-InterstellerApex, Nivaar

Video Solution (CRITICAL THINKING!!!)

https://youtu.be/uTBCTiIJbOY

~Education, the Study of Everything

Video Solution by OmegaLearn

https://youtu.be/6xNkyDgIhEE?t=2341

Video Solution

https://youtu.be/doHZiAT36BY

~savannahsolver

See Also

2018 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png