Difference between revisions of "2007 AMC 8 Problems/Problem 24"

(Solution 2)
(Video Solution 2)
(One intermediate revision by the same user not shown)
Line 12: Line 12:
 
==Solution 2==
 
==Solution 2==
 
Only (1,2,3) and (2,3,4) are possible combinations that sum to 3. The total ways to choose three numbers from the four numbers is 4 choose 3 which equals 4. The answer is <math>\frac{2}{4} = \boxed{\frac{1}{2}}</math>.
 
Only (1,2,3) and (2,3,4) are possible combinations that sum to 3. The total ways to choose three numbers from the four numbers is 4 choose 3 which equals 4. The answer is <math>\frac{2}{4} = \boxed{\frac{1}{2}}</math>.
 
==Video Solution==
 
 
https://youtu.be/hwc11K02cEc - Happytwin
 
 
==Video Solution 2==
 
 
https://youtu.be/cUxFS9l-Pb4 - Soo, DRMS, NM
 
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2007|num-b=23|num-a=25}}
 
{{AMC8 box|year=2007|num-b=23|num-a=25}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 09:06, 18 June 2024

Problem

A bag contains four pieces of paper, each labeled with one of the digits $1$, $2$, $3$ or $4$, with no repeats. Three of these pieces are drawn, one at a time without replacement, to construct a three-digit number. What is the probability that the three-digit number is a multiple of $3$? $\textbf{(A)}\ \frac{1}{4}\qquad\textbf{(B)}\ \frac{1}{3}\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{2}{3}\qquad\textbf{(E)}\ \frac{3}{4}$

Solution 1

The number of ways to form a 3-digit number is $4 \cdot 3 \cdot 2 = 24$. The combination of digits that give us multiples of 3 are (1,2,3) and (2,3,4), as the integers in the subsets have a sum which is divisible by 3. The number of 3-digit numbers that contain these numbers is $3! + 3! = 12$. Therefore, the probability is $\frac{12}{24} = \boxed{\frac{1}{2}}$.

~abc2142

Solution 2

Only (1,2,3) and (2,3,4) are possible combinations that sum to 3. The total ways to choose three numbers from the four numbers is 4 choose 3 which equals 4. The answer is $\frac{2}{4} = \boxed{\frac{1}{2}}$.

See Also

2007 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png