Difference between revisions of "1970 AHSME Problems/Problem 16"
Talkinaway (talk | contribs) |
Tecilis459 (talk | contribs) m (Unify solution header) |
||
Line 10: | Line 10: | ||
\text{(E) } 26</math> | \text{(E) } 26</math> | ||
− | = Solution = | + | == Solution == |
Plugging in <math>n=3</math> gives <math>F(4) = \frac{F(3) \cdot F(2) + 1}{F(1)} = \frac{1 \cdot 1 + 1}{1} = 2</math>. | Plugging in <math>n=3</math> gives <math>F(4) = \frac{F(3) \cdot F(2) + 1}{F(1)} = \frac{1 \cdot 1 + 1}{1} = 2</math>. |
Latest revision as of 12:39, 16 July 2024
Contents
[hide]Problem
If is a function such that , and such that for then
Solution
Plugging in gives .
Plugging in gives .
Plugging in gives .
Thus, the answer is .
Sidenote
All the numbers in the sequence are integers. In fact, the function satisfies . (Prove it!).
See also
1970 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.