Difference between revisions of "1965 AHSME Problems/Problem 11"

(Solution)
m (slightly more concise)
Line 20: Line 20:
 
Statement II is correct, because <math>(-4)(-16)=64</math>, so <math>\sqrt{(-4)(-16)}=\sqrt{64}</math>. <math>\newline</math>
 
Statement II is correct, because <math>(-4)(-16)=64</math>, so <math>\sqrt{(-4)(-16)}=\sqrt{64}</math>. <math>\newline</math>
 
Statement III is correct, because <math>8^2=64</math> and <math>8 \geq 0</math> (so it is the [[square root|principal square root]] of 64). <math>\newline</math>
 
Statement III is correct, because <math>8^2=64</math> and <math>8 \geq 0</math> (so it is the [[square root|principal square root]] of 64). <math>\newline</math>
Thus, only statement I is incorrect, and so we choose answer <math>\fbox{B}</math>.
+
Thus, only statement I is incorrect, so we choose answer <math>\fbox{B}</math>.
  
 
==See Also==
 
==See Also==
 
{{AHSME 40p box|year=1965|num-b=10|num-a=12}}
 
{{AHSME 40p box|year=1965|num-b=10|num-a=12}}

Revision as of 10:19, 18 July 2024

Problem

Consider the statements: I:(4)(16)=(4)(16),II:(4)(16)=64,III:64=8. Of these the following are incorrect.

$\textbf{(A)}\ \text{none} \qquad  \textbf{(B) }\ \text{I only} \qquad  \textbf{(C) }\ \text{II only} \qquad  \textbf{(D) }\ \text{III only}\qquad \textbf{(E) }\ \text{I and III only}$

Solution

Statement I is incorrect, because $(\sqrt{-4})(\sqrt{-16})=(i\sqrt{4})(i\sqrt{16})=i^2(\sqrt{4})(\sqrt{16})=-\sqrt{64}$. $\newline$ Statement II is correct, because $(-4)(-16)=64$, so $\sqrt{(-4)(-16)}=\sqrt{64}$. $\newline$ Statement III is correct, because $8^2=64$ and $8 \geq 0$ (so it is the principal square root of 64). $\newline$ Thus, only statement I is incorrect, so we choose answer $\fbox{B}$.

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions