1965 AHSME Problems

1965 AHSC (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 40-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive ? points for each correct answer, ? points for each problem left unanswered, and ? points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have ? minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Problem 1

The number of real values of $x$ satisfying the equation $2^{2x^2 - 7x + 5} = 1$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 3 \qquad  \textbf{(E) }\ \text{more than 4}$

Solution

Problem 2

A regular hexagon is inscribed in a circle. The ratio of the length of a side of the hexagon to the length of the shorter of the arcs intercepted by the side, is:

$\textbf{(A)}\ 1: 1 \qquad  \textbf{(B) }\ 1: 6 \qquad  \textbf{(C) }\ 1: \pi \qquad  \textbf{(D) }\ 3: \pi \qquad  \textbf{(E) }\ 6:\pi$

Solution

Problem 3

The expression $(81)^{ - 2^{ - 2}}$ has the same value as:

$\textbf{(A)}\ \frac {1}{81} \qquad  \textbf{(B) }\ \frac {1}{3} \qquad  \textbf{(C) }\ 3 \qquad  \textbf{(D) }\ 81\qquad \textbf{(E) }\ 81^4$

Solution

Problem 4

Line $\ell_2$ intersects line $\ell_1$ and line $\ell_3$ is parallel to $\ell_1$. The three lines are distinct and lie in a plane. The number of points equidistant from all three lines is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 4 \qquad  \textbf{(E) }\ 8$

Solution

Problem 5

When the repeating decimal $0.363636\ldots$ is written in simplest fractional form, the sum of the numerator and denominator is:

$\textbf{(A)}\ 15 \qquad  \textbf{(B) }\ 45 \qquad  \textbf{(C) }\ 114 \qquad  \textbf{(D) }\ 135 \qquad  \textbf{(E) }\ 150$

Solution

Problem 6

If $10^{\log_{10}9} = 8x + 5$ then $x$ equals:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ \frac {1}{2} \qquad  \textbf{(C) }\ \frac {5}{8} \qquad  \textbf{(D) }\ \frac{9}{8}\qquad \textbf{(E) }\ \frac{2\log_{10}3-5}{8}$

Solution

Problem 7

The sum of the reciprocals of the roots of the equation $ax^2 + bx + c = 0$ is:

$\textbf{(A)}\ \frac {1}{a} + \frac {1}{b} \qquad  \textbf{(B) }\ - \frac {c}{b} \qquad  \textbf{(C) }\ \frac{b}{c}\qquad \textbf{(D) }\ -\frac{a}{b}\qquad \textbf{(E) }\ -\frac{b}{c}$

Solution

Problem 8

One side of a given triangle is 18 inches. Inside the triangle a line segment is drawn parallel to this side forming a trapezoid whose area is one-third of that of the triangle. The length of this segment, in inches, is:

$\textbf{(A)}\ 6\sqrt {6} \qquad  \textbf{(B) }\ 9\sqrt {2} \qquad  \textbf{(C) }\ 12 \qquad  \textbf{(D) }\ 6\sqrt{3}\qquad \textbf{(E) }\ 9$

Solution

Problem 9

The vertex of the parabola $y = x^2 - 8x + c$ will be a point on the $x$-axis if the value of $c$ is:

$\textbf{(A)}\ - 16 \qquad  \textbf{(B) }\ - 4 \qquad  \textbf{(C) }\ 4 \qquad  \textbf{(D) }\ 8 \qquad  \textbf{(E) }\ 16$

Solution

Problem 10

The statement $x^2 - x - 6 < 0$ is equivalent to the statement:

$\textbf{(A)}\ - 2 < x < 3 \qquad  \textbf{(B) }\ x > - 2 \qquad  \textbf{(C) }\ x < 3 \\ \textbf{(D) }\ x > 3 \text{ and }x < - 2 \qquad  \textbf{(E) }\ x > 3 \text{ or }x < - 2$

Solution

Problem 11

Consider the statements: $\newline$ $I: (\sqrt{-4})(\sqrt {-16}) = \sqrt{(-4)(-16)}$, $\newline$ $II: \sqrt{(-4)(-16)} = \sqrt{64}$, $\newline$ $III: \sqrt{64} = 8$. $\newline$ Of these the following are incorrect.

$\textbf{(A)}\ \text{none} \qquad  \textbf{(B) }\ \text{I only} \qquad  \textbf{(C) }\ \text{II only} \qquad  \textbf{(D) }\ \text{III only}\qquad \textbf{(E) }\ \text{I and III only}$

Solution

Problem 12

A rhombus is inscribed in $\triangle ABC$ in such a way that one of its vertices is $A$ and two of its sides lie along $AB$ and $AC$. If $\overline{AC} = 6$ inches, $\overline{AB} = 12$ inches, and $\overline{BC} = 8$ inches, the side of the rhombus, in inches, is:

$\textbf{(A)}\ 2 \qquad  \textbf{(B) }\ 3 \qquad  \textbf{(C) }\ 3 \frac {1}{2} \qquad  \textbf{(D) }\ 4 \qquad  \textbf{(E) }\ 5$

Solution

Problem 13

Let $n$ be the number of number-pairs $(x,y)$ which satisfy $5y - 3x = 15$ and $x^2 + y^2 \le 16$. Then $n$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ \text{more than two, but finite}\qquad \textbf{(E) }\ \text{greater than any finite number}$

Solution

Problem 14

The sum of the numerical coefficients in the complete expansion of $(x^2 - 2xy + y^2)^7$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 7 \qquad  \textbf{(C) }\ 14 \qquad  \textbf{(D) }\ 128 \qquad  \textbf{(E) }\ 128^2$

Solution

Problem 15

The symbol $25_b$ represents a two-digit number in the base $b$. If the number $52_b$ is double the number $25_b$, then $b$ is:

$\textbf{(A)}\ 7 \qquad  \textbf{(B) }\ 8 \qquad  \textbf{(C) }\ 9 \qquad  \textbf{(D) }\ 11 \qquad  \textbf{(E) }\ 12$

Solution

Problem 16

Let line $AC$ be perpendicular to line $CE$. Connect $A$ to $D$, the midpoint of $CE$, and connect $E$ to $B$, the midpoint of $AC$. If $AD$ and $EB$ intersect in point $F$, and $\overline{BC} = \overline{CD} = 15$ inches, then the area of triangle $DFE$, in square inches, is:

$\textbf{(A)}\ 50 \qquad  \textbf{(B) }\ 50\sqrt {2} \qquad  \textbf{(C) }\ 75 \qquad  \textbf{(D) }\ \frac{15}{2}\sqrt{105}\qquad \textbf{(E) }\ 100$

Solution

Problem 17

Given the true statement: The picnic on Sunday will not be held only if the weather is not fair. We can then conclude that:

$\textbf{(A)}\ \text{If the picnic is held, Sunday's weather is undoubtedly fair.} \\ \textbf{(B) }\ \text{If the picnic is not held, Sunday's weather is possibly unfair.} \\ \textbf{(C) }\ \text{If it is not fair Sunday, the picnic will not be held.} \\ \textbf{(D) }\ \text{If it is fair Sunday, the picnic may be held.} \\ \textbf{(E) }\ \text{If it is fair Sunday, the picnic must be held.}$

Solution

Problem 18

If $1 - y$ is used as an approximation to the value of $\frac {1}{1 + y}, |y| < 1$, the ratio of the error made to the correct value is:

$\textbf{(A)}\ y \qquad  \textbf{(B) }\ y^2 \qquad  \textbf{(C) }\ \frac {1}{1 + y} \qquad  \textbf{(D) }\ \frac{y}{1+y}\qquad \textbf{(E) }\ \frac{y^2}{1+y}\qquad$

Solution

Problem 19

If $x^4 + 4x^3 + 6px^2 + 4qx + r$ is exactly divisible by $x^3 + 3x^2 + 9x + 3$, the value of $(p + q)r$ is:

$\textbf{(A)}\ - 18 \qquad  \textbf{(B) }\ 12 \qquad  \textbf{(C) }\ 15 \qquad  \textbf{(D) }\ 27 \qquad  \textbf{(E) }\ 45 \qquad$

Solution

Problem 20

For every $n$ the sum of n terms of an arithmetic progression is $2n + 3n^2$. The $r$th term is:

$\textbf{(A)}\ 3r^2 \qquad  \textbf{(B) }\ 3r^2 + 2r \qquad  \textbf{(C) }\ 6r - 1 \qquad  \textbf{(D) }\ 5r + 5 \qquad  \textbf{(E) }\ 6r+2\qquad$

Solution

Problem 21

It is possible to choose $x > \frac {2}{3}$ in such a way that the value of $\log_{10}(x^2 + 3) - 2 \log_{10}x$ is

$\textbf{(A)}\ \text{negative} \qquad  \textbf{(B) }\ \text{zero} \qquad  \textbf{(C) }\ \text{one} \\ \textbf{(D) }\ \text{smaller than any positive number that might be specified} \\ \textbf{(E) }\ \text{greater than any positive number that might be specified}$

Solution

Problem 22

If $a_2 \neq 0$ and $r$ and $s$ are the roots of $a_0 + a_1x + a_2x^2 = 0$, then the equality $a_0 + a_1x + a_2x^2 = a_0\left (1 - \frac {x}{r} \right ) \left (1 - \frac {x}{s} \right )$ holds:

$\textbf{(A)}\ \text{for all values of }x, a_0\neq 0 \qquad \textbf{(B) }\ \text{for all values of }x \\ \textbf{(C) }\ \text{only when }x = 0 \qquad \textbf{(D) }\ \text{only when }x = r \text{ or }x = s \\ \textbf{(E) }\ \text{only when }x = r \text{ or }x = s, a_0 \neq 0$

Solution

Problem 23

If we write $|x^2 - 4| < N$ for all $x$ such that $|x - 2| < 0.01$, the smallest value we can use for $N$ is:

$\textbf{(A)}\ .0301 \qquad  \textbf{(B) }\ .0349 \qquad  \textbf{(C) }\ .0399 \qquad  \textbf{(D) }\ .0401 \qquad  \textbf{(E) }\ .0499\qquad$

Solution

Problem 24

Given the sequence $10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}$, the smallest value of n such that the product of the first $n$ members of this sequence exceeds $100000$ is:

$\textbf{(A)}\ 7 \qquad  \textbf{(B) }\ 8 \qquad  \textbf{(C) }\ 9 \qquad  \textbf{(D) }\ 10 \qquad  \textbf{(E) }\ 11$

Solution

Problem 25

Let $ABCD$ be a quadrilateral with $AB$ extended to $E$ so that $\overline{AB} = \overline{BE}$. Lines $AC$ and $CE$ are drawn to form $\angle{ACE}$. For this angle to be a right angle it is necessary that quadrilateral $ABCD$ have:

$\textbf{(A)}\ \text{all angles equal} \qquad \textbf{(B) }\ \text{all sides equal} \\ \textbf{(C) }\ \text{two pairs of equal sides} \qquad \textbf{(D) }\ \text{one pair of equal sides} \\ \textbf{(E) }\ \text{one pair of equal angles}$

Solution

Problem 26

For the numbers $a, b, c, d, e$ define $m$ to be the arithmetic mean of all five numbers; $k$ to be the arithmetic mean of $a$ and $b$; $l$ to be the arithmetic mean of $c, d$, and $e$; and $p$ to be the arithmetic mean of $k$ and $l$. Then, no matter how $a, b, c, d$, and $e$ are chosen, we shall always have:

$\textbf{(A)}\ m = p \qquad  \textbf{(B) }\ m \ge p \qquad  \textbf{(C) }\ m > p \qquad \\ \textbf{(D) }\ m < p\qquad \textbf{(E) }\ \text{none of these}$

Solution

Problem 27

When $y^2 + my + 2$ is divided by $y - 1$ the quotient is $f(y)$ and the remainder is $R_1$. When $y^2 + my + 2$ is divided by $y + 1$ the quotient is $g(y)$ and the remainder is $R_2$. If $R_1 = R_2$ then $m$ is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ - 1 \qquad  \textbf{(E) }\ \text{an undetermined constant}$

Solution

Problem 28

An escalator (moving staircase) of $n$ uniform steps visible at all times descends at constant speed. Two boys, $A$ and $Z$, walk down the escalator steadily as it moves, A negotiating twice as many escalator steps per minute as $Z$. $A$ reaches the bottom after taking $27$ steps while $Z$ reaches the bottom after taking $18$ steps. Then $n$ is:

$\textbf{(A)}\ 63 \qquad  \textbf{(B) }\ 54 \qquad  \textbf{(C) }\ 45 \qquad  \textbf{(D) }\ 36 \qquad  \textbf{(E) }\ 30$

Solution

Problem 29

Of $28$ students taking at least one subject the number taking Mathematics and English only equals the number taking Mathematics only. No student takes English only or History only, and six students take Mathematics and History, but not English. The number taking English and History only is five times the number taking all three subjects. If the number taking all three subjects is even and non-zero, the number taking English and Mathematics only is:

$\textbf{(A)}\ 5 \qquad  \textbf{(B) }\ 6 \qquad  \textbf{(C) }\ 7 \qquad  \textbf{(D) }\ 8 \qquad  \textbf{(E) }\ 9$

Solution

Problem 30

Let $BC$ of right triangle $ABC$ be the diameter of a circle intersecting hypotenuse $AB$ in $D$. At $D$ a tangent is drawn cutting leg $CA$ in $F$. This information is not sufficient to prove that

$\textbf{(A)}\ DF \text{ bisects }CA \qquad  \textbf{(B) }\ DF \text{ bisects }\angle CDA \\ \textbf{(C) }\ DF = FA \qquad  \textbf{(D) }\ \angle A = \angle BCD \qquad  \textbf{(E) }\ \angle CFD = 2\angle A$

Solution

Problem 31

The number of real values of $x$ satisfying the equality $(\log_ax)(\log_bx) = \log_ab$, where $a > 0, b > 0, a \neq 1, b \neq 1$, is:

$\textbf{(A)}\ 0 \qquad  \textbf{(B) }\ 1 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ \text{a finite integer greater than 2}\qquad \textbf{(E) }\ \text{not finite}$

Solution

Problem 32

An article costing $C$ dollars is sold for $100 at a loss of $x$ percent of the selling price. It is then resold at a profit of $x$ percent of the new selling price $S'$. If the difference between $S'$ and $C$ is $1\frac {1}{9}$ dollars, then $x$ is:

$\textbf{(A)}\ \text{undetermined} \qquad  \textbf{(B) }\ \frac {80}{9} \qquad  \textbf{(C) }\ 10 \qquad  \textbf{(D) }\ \frac{95}{9}\qquad \textbf{(E) }\ \frac{100}{9}$

Solution

Problem 33

If the number $15!$, that is, $15 \cdot 14 \cdot 13 \dots 1$, ends with $k$ zeros when given to the base $12$ and ends with $h$ zeros when given to the base $10$, then $k + h$ equals:

$\textbf{(A)}\ 5 \qquad  \textbf{(B) }\ 6 \qquad  \textbf{(C) }\ 7 \qquad  \textbf{(D) }\ 8 \qquad  \textbf{(E) }\ 9$

Solution

Problem 34

For $x \ge 0$ the smallest value of $\frac {4x^2 + 8x + 13}{6(1 + x)}$ is:

$\textbf{(A)}\ 1 \qquad  \textbf{(B) }\ 2 \qquad  \textbf{(C) }\ \frac {25}{12} \qquad  \textbf{(D) }\ \frac{13}{6}\qquad \textbf{(E) }\ \frac{34}{5}$

Solution

Problem 35

The length of a rectangle is $5$ inches and its width is less than $4$ inches. The rectangle is folded so that two diagonally opposite vertices coincide. If the length of the crease is $\sqrt {6}$, then the width is:

$\textbf{(A)}\ \sqrt {2} \qquad  \textbf{(B) }\ \sqrt {3} \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ \sqrt{5}\qquad \textbf{(E) }\ \sqrt{\frac{11}{2}}$

Solution

Problem 36

Given distinct straight lines $OA$ and $OB$. From a point in $OA$ a perpendicular is drawn to $OB$; from the foot of this perpendicular a line is drawn perpendicular to $OA$. From the foot of this second perpendicular a line is drawn perpendicular to $OB$; and so on indefinitely. The lengths of the first and second perpendiculars are $a$ and $b$, respectively. Then the sum of the lengths of the perpendiculars approaches a limit as the number of perpendiculars grows beyond all bounds. This limit is:

$\textbf{(A)}\ \frac {b}{a - b} \qquad  \textbf{(B) }\ \frac {a}{a - b} \qquad  \textbf{(C) }\ \frac {ab}{a - b} \qquad  \textbf{(D) }\ \frac{b^2}{a-b}\qquad \textbf{(E) }\ \frac{a^2}{a-b}$

Solution

Problem 37

Point $E$ is selected on side $AB$ of $\triangle{ABC}$ in such a way that $AE: EB = 1: 3$ and point $D$ is selected on side $BC$ such that $CD: DB = 1: 2$. The point of intersection of $AD$ and $CE$ is $F$. Then $\frac {EF}{FC} + \frac {AF}{FD}$ is:

$\textbf{(A)}\ \frac {4}{5} \qquad  \textbf{(B) }\ \frac {5}{4} \qquad  \textbf{(C) }\ \frac {3}{2} \qquad  \textbf{(D) }\ 2\qquad \textbf{(E) }\ \frac{5}{2}$

Solution

Problem 38

$A$ takes $m$ times as long to do a piece of work as $B$ and $C$ together; $B$ takes $n$ times as long as $C$ and $A$ together; and $C$ takes $x$ times as long as $A$ and $B$ together. Then $x$, in terms of $m$ and $n$, is:

$\textbf{(A)}\ \frac {2mn}{m + n} \qquad  \textbf{(B) }\ \frac {1}{2(m + n)} \qquad  \textbf{(C) }\ \frac{1}{m+n-mn}\qquad \textbf{(D) }\ \frac{1-mn}{m+n+2mn}\qquad \textbf{(E) }\ \frac{m+n+2}{mn-1}$

Solution

Problem 39

A foreman noticed an inspector checking a $3$"-hole with a $2$"-plug and a $1$"-plug and suggested that two more gauges be inserted to be sure that the fit was snug. If the new gauges are alike, then the diameter, $d$, of each, to the nearest hundredth of an inch, is:

$\textbf{(A)}\ .87 \qquad  \textbf{(B) }\ .86 \qquad  \textbf{(C) }\ .83 \qquad  \textbf{(D) }\ .75 \qquad  \textbf{(E) }\ .71$

Solution

Problem 40

Let $n$ be the number of integer values of $x$ such that $P = x^4 + 6x^3 + 11x^2 + 3x + 31$ is the square of an integer. Then $n$ is:

$\textbf{(A)}\ 4 \qquad  \textbf{(B) }\ 3 \qquad  \textbf{(C) }\ 2 \qquad  \textbf{(D) }\ 1 \qquad  \textbf{(E) }\ 0$

Solution


See also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
1964 AHSC
Followed by
1966 AHSC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png