Difference between revisions of "1965 AHSME Problems/Problem 38"

(created solution page)
 
(Solution)
Line 10: Line 10:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{E}</math>
+
 
 +
Let <math>a</math>, <math>b</math>, and <math>c</math> be the speeds at which <math>A</math>, <math>B</math> and <math>C</math> work, respectively. Also, let the piece of work be worth one unit of work. Then, using the information from the problem along with basic [[rate]] formulas, we obtain the following equations:
 +
\begin{align*}
 +
\frac{1}{a}&=m*\frac{1}{b+c} \\
 +
\frac{1}{b}&=n*\frac{1}{a+c} \\
 +
\frac{1}{c}&=x*\frac{1}{a+b}
 +
\end{align*}
 +
These equations can be rearranged into the following:
 +
\begin{align*}
 +
\text{(i) } ma&=b+c \\
 +
\text{(ii) } nb&=a+c \\
 +
\text{(iii) } xc&=a+b \\
 +
\end{align*}
 +
Solving for <math>a</math> in equation (i) gives us <math>a=\frac{b+c}{m}</math>. Substituting this expression for <math>a</math> into equation (ii) yields:
 +
\begin{align*}
 +
nb&=\frac{b+c}{m}+c \\
 +
mnb&=b+c+mc \\
 +
(mn-1)b&=(m+1)c \\
 +
b&=\frac{(m+1)c}{mn-1}
 +
\end{align*}
 +
Finally, substituting our expressions for <math>a</math> and <math>b</math> into equation (iii) yields our final answer:
 +
\begin{align*}
 +
xc&=\frac{b+c}{m}+\frac{(m+1)c}{mn-1} \\
 +
&=\frac{\frac{(m+1)c}{mn-1}+c}{m}+\frac{(m+1)c}{mn-1} \\
 +
&=\frac{c}{m}(\frac{m+1+mn-1}{mn-1}+\frac{m^2+m}{mn-1}) \\
 +
&=\frac{c}{m}(\frac{m^2+mn+2m}{mn-1}) \\
 +
&=c(\frac{m+n+2}{mn-1})
 +
\end{align*}
 +
Thus, <math>x=\boxed{\textbf{(E) }\frac{m+n+2}{mn-1}}</math>.
  
 
== See Also ==
 
== See Also ==
 
{{AHSME 40p box|year=1965|num-b=37|num-a=39}}
 
{{AHSME 40p box|year=1965|num-b=37|num-a=39}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 11:30, 20 July 2024

Problem

$A$ takes $m$ times as long to do a piece of work as $B$ and $C$ together; $B$ takes $n$ times as long as $C$ and $A$ together; and $C$ takes $x$ times as long as $A$ and $B$ together. Then $x$, in terms of $m$ and $n$, is:

$\textbf{(A)}\ \frac {2mn}{m + n} \qquad  \textbf{(B) }\ \frac {1}{2(m + n)} \qquad  \textbf{(C) }\ \frac{1}{m+n-mn}\qquad \textbf{(D) }\ \frac{1-mn}{m+n+2mn}\qquad \textbf{(E) }\ \frac{m+n+2}{mn-1}$

Solution

Let $a$, $b$, and $c$ be the speeds at which $A$, $B$ and $C$ work, respectively. Also, let the piece of work be worth one unit of work. Then, using the information from the problem along with basic rate formulas, we obtain the following equations: \begin{align*} \frac{1}{a}&=m*\frac{1}{b+c} \\ \frac{1}{b}&=n*\frac{1}{a+c} \\ \frac{1}{c}&=x*\frac{1}{a+b} \end{align*} These equations can be rearranged into the following: \begin{align*} \text{(i) } ma&=b+c \\ \text{(ii) } nb&=a+c \\ \text{(iii) } xc&=a+b \\ \end{align*} Solving for $a$ in equation (i) gives us $a=\frac{b+c}{m}$. Substituting this expression for $a$ into equation (ii) yields: \begin{align*} nb&=\frac{b+c}{m}+c \\ mnb&=b+c+mc \\ (mn-1)b&=(m+1)c \\ b&=\frac{(m+1)c}{mn-1} \end{align*} Finally, substituting our expressions for $a$ and $b$ into equation (iii) yields our final answer: \begin{align*} xc&=\frac{b+c}{m}+\frac{(m+1)c}{mn-1} \\ &=\frac{\frac{(m+1)c}{mn-1}+c}{m}+\frac{(m+1)c}{mn-1} \\ &=\frac{c}{m}(\frac{m+1+mn-1}{mn-1}+\frac{m^2+m}{mn-1}) \\ &=\frac{c}{m}(\frac{m^2+mn+2m}{mn-1}) \\ &=c(\frac{m+n+2}{mn-1}) \end{align*} Thus, $x=\boxed{\textbf{(E) }\frac{m+n+2}{mn-1}}$.

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 37
Followed by
Problem 39
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png