Difference between revisions of "1957 AHSME Problems/Problem 45"

(created solution page)
 
(Solution)
 
Line 9: Line 9:
  
 
== Solution ==
 
== Solution ==
<math>\boxed{\textbf{(A)}}</math>.
+
From the initial equation <math>\tfrac x y = x-y</math>, we can solve for <math>y</math> in terms of <math>x</math> as follows:
 +
\begin{align*}\
 +
\frac x y &= x-y \\
 +
x &= xy-y^2 \\
 +
y^2-xy+x &= 0 \\
 +
y = \frac{x \pm \sqrt{x^2-4x}}2
 +
\end{align*}
 +
Because <math>y</math> is real, the [[discriminant]] of the above expression for <math>y</math> must be <math>\geq 0</math>, so <math>x^2-4x=x(x-4) \geq 0</math>. This is true when <math>x \geq 4</math> and <math>x \leq 0</math>, so we choose answer <math>\boxed{\textbf{(A)}}</math>.
  
 
== See Also ==
 
== See Also ==

Latest revision as of 12:06, 27 July 2024

Problem

If two real numbers $x$ and $y$ satisfy the equation $\frac{x}{y} = x - y$, then:

$\textbf{(A)}\ {x \ge 4}\text{ or }{x \le 0}\qquad \\  \textbf{(B)}\ {y}\text{ can equal }{1}\qquad \\  \textbf{(C)}\ \text{both }{x}\text{ and }{y}\text{ must be irrational}\qquad\\  \textbf{(D)}\ {x}\text{ and }{y}\text{ cannot both be integers}\qquad\\  \textbf{(E)}\ \text{both }{x}\text{ and }{y}\text{ must be rational}$

Solution

From the initial equation $\tfrac x y = x-y$, we can solve for $y$ in terms of $x$ as follows: \begin{align*}\ \frac x y &= x-y \\ x &= xy-y^2 \\ y^2-xy+x &= 0 \\ y = \frac{x \pm \sqrt{x^2-4x}}2 \end{align*} Because $y$ is real, the discriminant of the above expression for $y$ must be $\geq 0$, so $x^2-4x=x(x-4) \geq 0$. This is true when $x \geq 4$ and $x \leq 0$, so we choose answer $\boxed{\textbf{(A)}}$.

See Also

1957 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 44
Followed by
Problem 46
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png