Difference between revisions of "2002 AMC 10A Problems/Problem 16"

(New page: == Problem == Let <math>\text{a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}</math>. What is <math>\text{a + b + c + d}</math>? <math>\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \...)
 
 
(22 intermediate revisions by 10 users not shown)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
  
Let <math>\text{a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}</math>. What is <math>\text{a + b + c + d}</math>?
+
Let <math>a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5</math>. What is <math>a + b + c + d</math>?
  
 
<math>\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5</math>
 
<math>\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5</math>
  
==Solution==
+
==Solution 1==
Let <math>\text{x=a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5}</math>. Since one of the sums involves a,b,c, and d, it makes sense to consider 4x. <math>\text{4x=(a+1)+(b+2)+(c+3)+(d+4)=a+b+c+d+10=4(a+b+c+d)+20}</math>. Rearranging, we have <math>\text{3(a+b+c+d)=-10}</math>, so <math>\text{a+b+c+d}=\frac{-10}{3}</math>. Thus, our answer is <math>\boxed{\text{(B)}\ -10/3}</math>.
+
Let <math>x=a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5</math>. Since one of the sums involves <math>a, b, c,</math> and <math>d,</math> it makes sense to consider <math>4x</math>. We have <math>4x=(a+1)+(b+2)+(c+3)+(d+4)=a+b+c+d+10=4(a+b+c+d)+20</math>. Rearranging, we have <math>3(a+b+c+d)=-10</math>, so <math>a+b+c+d=\frac{-10}{3}</math>. Thus, our answer is <math>\boxed{\text{(B)}\ -10/3}</math>.
 +
 
 +
==Solution 2==
 +
Take
 +
<math>a + 1 = a + b + c + d + 5</math>.
 +
Now we can clearly see:
 +
<math>-4 = b + c + d</math>.
 +
Continuing this same method with <math>b + 2, c + 3</math>, and <math>d + 4</math> we get:
 +
<math> -4 = b + c + d</math>,
 +
<math> -3 = a + c + d</math>,
 +
<math> -2 = a + b + d</math>, and
 +
<math> -1 = a + b + c</math>,
 +
Adding, we see <math> -10 = 3a + 3b + 3c + 3d</math>. Therefore, <math>a + b + c + d = \boxed{\frac{-10}{3}}</math>.
 +
 
 +
==Solution 3(Video solution using [The Apple Method])==
 +
https://www.youtube.com/watch?v=rz86M2hlOGk&feature=emb_logo
 +
https://youtu.be/NRdOxPUDngI
 +
 
 +
== Video Solution by OmegaLearn ==
 +
https://youtu.be/tKsYSBdeVuw?t=4105
 +
 
 +
~ pi_is_3.14
 +
 
 +
==Video Solution by Daily Dose of Math==
 +
 
 +
https://youtu.be/X1pdpIGSFRU
 +
 
 +
~Thesmartgreekmathdude
  
 
==See Also==
 
==See Also==
Line 12: Line 39:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 08:57, 1 September 2024

Problem

Let $a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5$. What is $a + b + c + d$?

$\text{(A)}\ -5 \qquad \text{(B)}\ -10/3 \qquad \text{(C)}\ -7/3 \qquad \text{(D)}\ 5/3 \qquad \text{(E)}\ 5$

Solution 1

Let $x=a + 1 = b + 2 = c + 3 = d + 4 = a + b + c + d + 5$. Since one of the sums involves $a, b, c,$ and $d,$ it makes sense to consider $4x$. We have $4x=(a+1)+(b+2)+(c+3)+(d+4)=a+b+c+d+10=4(a+b+c+d)+20$. Rearranging, we have $3(a+b+c+d)=-10$, so $a+b+c+d=\frac{-10}{3}$. Thus, our answer is $\boxed{\text{(B)}\ -10/3}$.

Solution 2

Take $a + 1 = a + b + c + d + 5$. Now we can clearly see: $-4 = b + c + d$. Continuing this same method with $b + 2, c + 3$, and $d + 4$ we get: $-4 = b + c + d$, $-3 = a + c + d$, $-2 = a + b + d$, and $-1 = a + b + c$, Adding, we see $-10 = 3a + 3b + 3c + 3d$. Therefore, $a + b + c + d = \boxed{\frac{-10}{3}}$.

Solution 3(Video solution using [The Apple Method])

https://www.youtube.com/watch?v=rz86M2hlOGk&feature=emb_logo https://youtu.be/NRdOxPUDngI

Video Solution by OmegaLearn

https://youtu.be/tKsYSBdeVuw?t=4105

~ pi_is_3.14

Video Solution by Daily Dose of Math

https://youtu.be/X1pdpIGSFRU

~Thesmartgreekmathdude

See Also

2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png