Difference between revisions of "2018 AMC 10B Problems/Problem 17"
Lakecomo224 (talk | contribs) (Created page with "In rectangle <math>PQRS</math>, <math>PQ=8</math> and <math>QR=6</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and...") |
(→Solution 1) |
||
(20 intermediate revisions by 11 users not shown) | |||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | |||
In rectangle <math>PQRS</math>, <math>PQ=8</math> and <math>QR=6</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, points <math>E</math> and <math>F</math> lie on <math>\overline{RS}</math>, and points <math>G</math> and <math>H</math> lie on <math>\overline{SP}</math> so that <math>AP=BQ<4</math> and the convex octagon <math>ABCDEFGH</math> is equilateral. The length of a side of this octagon can be expressed in the form <math>k+m\sqrt{n}</math>, where <math>k</math>, <math>m</math>, and <math>n</math> are integers and <math>n</math> is not divisible by the square of any prime. What is <math>k+m+n</math>? | In rectangle <math>PQRS</math>, <math>PQ=8</math> and <math>QR=6</math>. Points <math>A</math> and <math>B</math> lie on <math>\overline{PQ}</math>, points <math>C</math> and <math>D</math> lie on <math>\overline{QR}</math>, points <math>E</math> and <math>F</math> lie on <math>\overline{RS}</math>, and points <math>G</math> and <math>H</math> lie on <math>\overline{SP}</math> so that <math>AP=BQ<4</math> and the convex octagon <math>ABCDEFGH</math> is equilateral. The length of a side of this octagon can be expressed in the form <math>k+m\sqrt{n}</math>, where <math>k</math>, <math>m</math>, and <math>n</math> are integers and <math>n</math> is not divisible by the square of any prime. What is <math>k+m+n</math>? | ||
<math>\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106</math> | <math>\textbf{(A) } 1 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 21 \qquad \textbf{(D) } 92 \qquad \textbf{(E) } 106</math> | ||
+ | |||
+ | == Solution 1== | ||
+ | |||
+ | Let <math>AP=BQ=x</math>. Then <math>AB=8-2x</math>. | ||
+ | |||
+ | Now notice that since <math>CD=8-2x</math> we have <math>QC=DR=x-1</math>. | ||
+ | |||
+ | Thus by the Pythagorean Theorem we have <math>x^2+(x-1)^2=(8-2x)^2</math> which becomes <math>2x^2-30x+63=0\implies x=\dfrac{15-3\sqrt{11}}{2}</math> | ||
+ | |||
+ | Our answer is <math>8-(15-3\sqrt{11})=3\sqrt{11}-7\implies \boxed{\text{(B)}~7}</math>. (Mudkipswims42) | ||
+ | |||
+ | == Solution 2 == | ||
+ | Denote the length of the equilateral octagon as <math>x</math>. The length of <math>\overline{BQ}</math> can be expressed as <math>\frac{8-x}{2}</math>. By the Pythagorean Theorem, we find that: | ||
+ | <cmath>\left(\frac{8-x}{2}\right)^2+\overline{CQ}^2=x^2\implies \overline{CQ}=\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}</cmath> | ||
+ | Since <math>\overline{CQ}=\overline{DR}</math>, we can say that <math>x+2\sqrt{x^2-\left(\frac{8-x}{2}\right)^2}=6\implies x=-7\pm3\sqrt{11}</math>. We can discard the negative solution, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) }7}</math> ~ blitzkrieg21 | ||
+ | |||
+ | == Solution 3 == | ||
+ | Let the octagon's side length be <math>x</math>. Then <math>PH = \frac{6 - x}{2}</math> and <math>PA = \frac{8 - x}{2}</math>. By the Pythagorean theorem, <math>PH^2 + PA^2 = HA^2</math>, so <math>\left(\frac{6 - x}{2} \right)^2 + \left(\frac{8 - x}{2} \right)^2 = x^2</math>. By expanding the left side and combining the like terms, we get <math>\frac{x^2}{2} - 7x + 25 = x^2 \implies -\frac{x^2}{2} - 7x + 25 = 0</math>. Solving this using the quadratic formula, <math>\frac{-b \pm \sqrt{b^2-4ac}}{2a}</math>, we use <math>a = -\frac{1}{2}</math>, <math>b = -7</math>, and <math>c = 25</math>, to get one positive solution, <math>x=-7+3\sqrt{11}</math>, so <math>k+m+n=-7+3+11=\boxed{\textbf{(B) }7}</math> | ||
+ | |||
+ | ==Solution 4== | ||
+ | Let <math>AB</math>, or the side of the octagon, be <math>x</math>. Then, <math>BQ = \left(\frac{8-x}{2}\right)</math> and <math>CQ = \left(\frac{6-x}{2}\right)</math>. By the [[Pythagorean Theorem]], <math>BQ^2+CQ^2=x^2</math>, or <math>\left(\frac{8-x}{2}\right)^2+\left(\frac{6-x}{2}\right)^2 = x^2</math>. Multiplying this out, we have <math>x^2 = \frac{64-16x+x^2+36-12x+x^2}{4}</math>. Simplifying, <math>-2x^2-28x+100=0</math>. Dividing both sides by <math>-2</math> gives <math>x^2+14x-50=0</math>. Therefore, using the [[quadratic formula]], we have <math>x=-7 \pm 3\sqrt{11}</math>. Since lengths are always positive, then <math>x=-7+3\sqrt{11} \Rightarrow k+m+n=-7+3+11=\boxed{\textbf{(B)}\ 7}</math> | ||
+ | |||
+ | ~MrThinker | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/8sts_hn7cpQ | ||
+ | |||
+ | ~IceMatrix | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AMC10 box|year=2018|ab=B|num-b=16|num-a=18}} | ||
+ | {{MAA Notice}} |
Latest revision as of 19:37, 2 September 2024
Contents
[hide]Problem
In rectangle , and . Points and lie on , points and lie on , points and lie on , and points and lie on so that and the convex octagon is equilateral. The length of a side of this octagon can be expressed in the form , where , , and are integers and is not divisible by the square of any prime. What is ?
Solution 1
Let . Then .
Now notice that since we have .
Thus by the Pythagorean Theorem we have which becomes
Our answer is . (Mudkipswims42)
Solution 2
Denote the length of the equilateral octagon as . The length of can be expressed as . By the Pythagorean Theorem, we find that: Since , we can say that . We can discard the negative solution, so ~ blitzkrieg21
Solution 3
Let the octagon's side length be . Then and . By the Pythagorean theorem, , so . By expanding the left side and combining the like terms, we get . Solving this using the quadratic formula, , we use , , and , to get one positive solution, , so
Solution 4
Let , or the side of the octagon, be . Then, and . By the Pythagorean Theorem, , or . Multiplying this out, we have . Simplifying, . Dividing both sides by gives . Therefore, using the quadratic formula, we have . Since lengths are always positive, then
~MrThinker
Video Solution
~IceMatrix
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 16 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.