Difference between revisions of "2001 AIME I Problems/Problem 7"
(\*Solution 8*\) |
|||
(39 intermediate revisions by 16 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
+ | [[Triangle]] <math>ABC</math> has <math>AB=21</math>, <math>AC=22</math> and <math>BC=20</math>. Points <math>D</math> and <math>E</math> are located on <math>\overline{AB}</math> and <math>\overline{AC}</math>, respectively, such that <math>\overline{DE}</math> is [[parallel]] to <math>\overline{BC}</math> and contains the center of the [[incircle|inscribed circle]] of triangle <math>ABC</math>. Then <math>DE=m/n</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
− | == Solution == | + | __TOC__ |
+ | == Solution 1 == | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | // D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); | ||
+ | D(B--I--C); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>I</math> be the [[incenter]] of <math>\triangle ABC</math>, so that <math>BI</math> and <math>CI</math> are [[angle bisector]]s of <math>\angle ABC</math> and <math>\angle ACB</math> respectively. Then, <math>\angle BID = \angle CBI = \angle DBI,</math> so <math>\triangle BDI</math> is [[Isosceles triangle|isosceles]], and similarly <math>\triangle CEI</math> is isosceles. It follows that <math>DE = DB + EC</math>, so the perimeter of <math>\triangle ADE</math> is <math>AD + AE + DE = AB + AC = 43</math>. Hence, the ratio of the perimeters of <math>\triangle ADE</math> and <math>\triangle ABC</math> is <math>\frac{43}{63}</math>, which is the scale factor between the two similar triangles, and thus <math>DE = \frac{43}{63} \times 20 = \frac{860}{63}</math>. Thus, <math>m + n = \boxed{923}</math>. | ||
+ | |||
+ | == Solution 2 == | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | </asy></center> | ||
+ | |||
+ | The [[semiperimeter]] of <math>ABC</math> is <math>s = \frac{20 + 21 + 22}{2} = \frac{63}{2}</math>. By [[Heron's formula]], the area of the whole triangle is <math>A = \sqrt{s(s-a)(s-b)(s-c)} = \frac{21\sqrt{1311}}{4}</math>. Using the formula <math>A = rs</math>, we find that the [[inradius]] is <math>r = \frac{A}{s} = \frac{\sqrt{1311}}6</math>. Since <math>\triangle ADE \sim \triangle ABC</math>, the ratio of the heights of triangles <math>ADE</math> and <math>ABC</math> is equal to the ratio between sides <math>DE</math> and <math>BC</math>. From <math>A=\frac{1}{2}bh</math>, we find <math>h_{ABC} = \frac{21\sqrt{1311}}{40}</math>. Thus, we have | ||
+ | <center><math>\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.</math></center> Solving for <math>DE</math> gives <math>DE=\frac{860}{63},</math> so the answer is <math>m+n=\boxed{923}</math>. | ||
+ | |||
+ | |||
+ | |||
+ | Or we have the area of the triangle as <math>S</math>. | ||
+ | Using the ratio of heights to ratio of bases of <math>ADE</math> and <math>ABC</math> | ||
+ | <math>\frac {\frac {2S}{20}-\frac {2S}{63}}{\frac {2S}{20}}= \frac {DE}{BC(20)}</math> | ||
+ | from that it is easy to deduce that <math>DE=\frac{860}{63}</math>. | ||
+ | |||
+ | == Solution 3 ([[mass points]]) == | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | |||
+ | /* construct angle bisectors */ | ||
+ | path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } | ||
+ | D(anglebisector(C,A,B,B--C), d); D(anglebisector(B,C,A,A--B),d); D(anglebisector(C,B,A,A--C),d); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>P</math> be the [[incenter]]; then it is be the intersection of all three [[angle bisector]]s. Draw the bisector <math>AP</math> to where it intersects <math>BC</math>, and name the intersection <math>F</math>. | ||
+ | |||
+ | Using the [[angle bisector theorem]], we know the ratio <math>BF:CF</math> is <math>21:22</math>, thus we shall assign a weight of <math>22</math> to point <math>B</math> and a weight of <math>21</math> to point <math>C</math>, giving <math>F</math> a weight of <math>43</math>. In the same manner, using another bisector, we find that <math>A</math> has a weight of <math>20</math>. So, now we know <math>P</math> has a weight of <math>63</math>, and the ratio of <math>FP:PA</math> is <math>20:43</math>. Therefore, the smaller similar triangle <math>ADE</math> is <math>43/63</math> the height of the original triangle <math>ABC</math>. So, <math>DE</math> is <math>43/63</math> the size of <math>BC</math>. Multiplying this ratio by the length of <math>BC</math>, we find <math>DE</math> is <math>860/63 = m/n</math>. Therefore, <math>m+n=\boxed{923}</math>. | ||
+ | |||
+ | == Solution 4 (Faster) == | ||
+ | |||
+ | More directly than Solution 2, we have <cmath>DE=BC\left(\frac{h_a-r}{h_a}\right)=20\left(1-\frac{r}{\frac{[ABC]}{\frac{BC}{2}}}\right)=20\left(1-\frac{10r}{sr}\right)=20\left(1-\frac{10}{\frac{63}{2}}\right)=\frac{860}{63}\implies \boxed{923}.</cmath> | ||
+ | |||
+ | |||
+ | == Solution 5 == | ||
+ | |||
+ | Diagram borrowed from Solution 3. | ||
+ | |||
+ | <center><asy> | ||
+ | pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); | ||
+ | pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); | ||
+ | D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); | ||
+ | MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); | ||
+ | |||
+ | /* construct angle bisectors */ | ||
+ | path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } | ||
+ | D(anglebisector(C,A,B,B--C), d); D(anglebisector(C,B,A,A--C),d); | ||
+ | </asy></center> | ||
+ | |||
+ | Let the angle bisector of <math>\angle{A}</math> intersects <math>BC</math> at <math>F</math>. | ||
+ | |||
+ | Applying the [[Angle Bisector Theorem]] on <math>\angle{A}</math> we have | ||
+ | <cmath>\frac{AB}{BF}=\frac{AC}{CF}</cmath> | ||
+ | <cmath>BF=BC\cdot(\frac{AB}{AB+AC})</cmath> | ||
+ | <cmath>BF=\frac{420}{43}</cmath> | ||
+ | Since <math>BP</math> is the angle bisector of <math>\angle{B}</math>, we can once again apply the Angle Bisector Theorem on <math>\angle{B}</math> which gives | ||
+ | <cmath>\frac{BA}{AP}=\frac{BF}{FP}</cmath> | ||
+ | <cmath>\frac{AP}{PF}=\frac{AB}{BF}=\frac{41}{20}</cmath> | ||
+ | Since <math>\bigtriangleup ADE\sim\bigtriangleup ABC</math> we have | ||
+ | <cmath>\frac{DE}{BC}=\frac{AP}{AF}</cmath> | ||
+ | <cmath>DE=BC\cdot(\frac{AP}{(\frac{61}{41})\cdot AP})</cmath> | ||
+ | Solving gets <math>DE=\frac{860}{63}</math>. Thus <math>m+n=860+63=\boxed{923}</math>. | ||
+ | |||
+ | ~ Nafer | ||
+ | |||
+ | == Solution 6 == | ||
+ | Let <math>A'</math> be the foot of the altitude from <math>A</math> to <math>\overline {BC}</math> and <math>K</math> be the foot of the altitude from <math>A</math> to <math>\overline{DE}</math>. Evidently, <cmath>\frac{AK}{AA'} = 1- \frac{r}{AA'} = 1 - \frac{T/s}{T/BC}</cmath> where <math>r</math> is the inradius, <math>T = [ABC]</math>, and <math>s</math> is the semiperimeter. So, <cmath>\frac{AK}{AA'} = 1 - \frac{BC}{s} = 1 - \frac{20}{63}= \frac{43}{63}</cmath> Therefore, by similar triangles, we have <math>DE = BC * \frac{AK}{AA'} = 20 * \frac{AK}{AA'}= \boxed{\frac{860}{63}}</math>. | ||
+ | |||
+ | |||
+ | == Solution 7 == | ||
+ | Label <math>P</math> the point the angle bisector of <math>A</math> intersects <math>{BC}</math>. First we find <math>{BP}</math> and <math>{PC}</math>. By the Angle Bisector Theorem, <math>\frac{BP}{PC} = \frac{21}{22}</math> and solving for each using the fact that <math>{BC} = 20</math>, we see that <math>{BP} = \frac{420}{43}</math> and <math>PC = \frac{440}{43}</math>. | ||
+ | |||
+ | Because <math>{AP}</math> is the angle bisector of <math><A</math>, we can simply calculate it using Stewarts, | ||
+ | <cmath> {AP} = 21*22 - \frac{440}{43}\cdot\frac{420}{43}</cmath> | ||
+ | <cmath> {AP} = 21*22 - \frac{440\cdot420}{43^2}</cmath> | ||
+ | |||
+ | Now we can calculate what <math>{AO}</math> is. Using the formula to find the distance from a vertex to the incenter, <math>{AO} = \frac{43}{63} \cdot[21\cdot22 - \frac{420*440}{43^2}] = \frac{43^2\cdot22 - 20\cdot440}{43\cdot3}</math>. | ||
+ | |||
+ | Now because <math>\triangle{APE} ~ \triangle{ABC}</math>, we can find <math>{DE}</math> by <math>\frac{AO}{AP} \cdot 20</math>. Dividing and simplifying, we see that <math>\frac{1}{21}\cdot\frac{43}{3}\cdot20 = \frac{860}{63}</math>. So the answer is <math>\boxed{923}</math> | ||
+ | |||
+ | ~YBSuburbanTea | ||
+ | |||
+ | == Solution 8 (vectors) == | ||
+ | To solve this problem, we can use the fact that, in <math>\triangle ABC</math>, the vector representation of the incenter is <math>\overrightarrow I = \frac{a\overrightarrow A + b\overrightarrow B + c\overrightarrow C}{a+b+c}</math> and that that the vector of the foot of the bisector of <math>\angle BAC</math> on <math>\overline{BC}</math> is <math>\overrightarrow P = \frac{b\overrightarrow B + c\overrightarrow C}{b+c}</math>, where <math>a=BC,</math> <math>b=AC,</math> and <math>c=AB</math>. | ||
+ | |||
+ | Let point <math>A</math> be the origin of the coordinate plane. Then, <math>\overrightarrow A</math> is the zero vector, so we can simplify our expression for <math>\overrightarrow I</math> to <math>\frac{b\overrightarrow B + c\overrightarrow C}{a+b+c}</math>. Now, note that the vector components of <math>\overrightarrow I</math> and <math>\overrightarrow P</math> are the same, but they are multiplied by different scalars. Thus, the ratio of these scalars is the ratio of these vectors' magnitudes. Thus, we have <math>\frac{|\overrightarrow I|}{|\overrightarrow P|}=\frac{\tfrac1{a+b+c}}{\tfrac1{b+c}}=\frac{b+c}{a+b+c}=\frac{43}{63}</math>. | ||
+ | |||
+ | Let <math>D \in \overline{AB}</math> and <math>E \in \overline{AC}</math>. Because <math>\triangle AIE \sim \triangle APC</math>, we have <math>\frac{AI}{AP}=\frac{AE}{AC}</math>. Further, because <math>\triangle ADE \sim \triangle ABC</math>, we have <math>\frac{AE}{AC}=\frac{DE}{BC}</math>. Thus, by transitivity, <math>\frac{AI}{AP}=\frac{DE}{BC}</math>. We know that <math>\frac{AI}{AP}=\frac{43}{63}</math>, so <math>DE=\frac{AI}{AD}\cdot BC = \frac{43}{63}\cdot 20 = \frac{860}{63}</math>. | ||
+ | |||
+ | Thus, our answer is <math>860+63=\boxed{923}</math>. | ||
== See also == | == See also == | ||
− | + | {{AIME box|year=2001|n=I|num-b=6|num-a=8}} | |
+ | |||
+ | [[Category:Intermediate Geometry Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 06:57, 30 September 2024
Problem
Triangle has , and . Points and are located on and , respectively, such that is parallel to and contains the center of the inscribed circle of triangle . Then , where and are relatively prime positive integers. Find .
Contents
Solution 1
Let be the incenter of , so that and are angle bisectors of and respectively. Then, so is isosceles, and similarly is isosceles. It follows that , so the perimeter of is . Hence, the ratio of the perimeters of and is , which is the scale factor between the two similar triangles, and thus . Thus, .
Solution 2
The semiperimeter of is . By Heron's formula, the area of the whole triangle is . Using the formula , we find that the inradius is . Since , the ratio of the heights of triangles and is equal to the ratio between sides and . From , we find . Thus, we have
Solving for gives so the answer is .
Or we have the area of the triangle as . Using the ratio of heights to ratio of bases of and from that it is easy to deduce that .
Solution 3 (mass points)
Let be the incenter; then it is be the intersection of all three angle bisectors. Draw the bisector to where it intersects , and name the intersection .
Using the angle bisector theorem, we know the ratio is , thus we shall assign a weight of to point and a weight of to point , giving a weight of . In the same manner, using another bisector, we find that has a weight of . So, now we know has a weight of , and the ratio of is . Therefore, the smaller similar triangle is the height of the original triangle . So, is the size of . Multiplying this ratio by the length of , we find is . Therefore, .
Solution 4 (Faster)
More directly than Solution 2, we have
Solution 5
Diagram borrowed from Solution 3.
Let the angle bisector of intersects at .
Applying the Angle Bisector Theorem on we have Since is the angle bisector of , we can once again apply the Angle Bisector Theorem on which gives Since we have Solving gets . Thus .
~ Nafer
Solution 6
Let be the foot of the altitude from to and be the foot of the altitude from to . Evidently, where is the inradius, , and is the semiperimeter. So, Therefore, by similar triangles, we have .
Solution 7
Label the point the angle bisector of intersects . First we find and . By the Angle Bisector Theorem, and solving for each using the fact that , we see that and .
Because is the angle bisector of , we can simply calculate it using Stewarts,
Now we can calculate what is. Using the formula to find the distance from a vertex to the incenter, .
Now because , we can find by . Dividing and simplifying, we see that . So the answer is
~YBSuburbanTea
Solution 8 (vectors)
To solve this problem, we can use the fact that, in , the vector representation of the incenter is and that that the vector of the foot of the bisector of on is , where and .
Let point be the origin of the coordinate plane. Then, is the zero vector, so we can simplify our expression for to . Now, note that the vector components of and are the same, but they are multiplied by different scalars. Thus, the ratio of these scalars is the ratio of these vectors' magnitudes. Thus, we have .
Let and . Because , we have . Further, because , we have . Thus, by transitivity, . We know that , so .
Thus, our answer is .
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.