Difference between revisions of "2022 AMC 8 Problems/Problem 3"
MRENTHUSIASM (talk | contribs) |
|||
(2 intermediate revisions by 2 users not shown) | |||
Line 25: | Line 25: | ||
The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | The positive divisors of <math>100</math> are <cmath>1,2,4,5,10,20,25,50,100.</cmath> | ||
− | We | + | We apply casework to <math>a</math>: |
If <math>a=1</math>, then there are <math>3</math> cases: | If <math>a=1</math>, then there are <math>3</math> cases: | ||
Line 72: | Line 72: | ||
~harungurcan | ~harungurcan | ||
+ | |||
+ | ==Video Solution 7 by Dr. David== | ||
+ | |||
+ | https://youtu.be/EbLGPhGVz6E | ||
==See Also== | ==See Also== | ||
{{AMC8 box|year=2022|num-b=2|num-a=4}} | {{AMC8 box|year=2022|num-b=2|num-a=4}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 01:48, 19 November 2024
Contents
Problem
When three positive integers , , and are multiplied together, their product is . Suppose . In how many ways can the numbers be chosen?
Solution 1
The positive divisors of are It is clear that so we apply casework to
- If then
- If then
- If then
- If then
Together, the numbers and can be chosen in ways.
~MRENTHUSIASM
Solution 2
The positive divisors of are We apply casework to :
If , then there are cases:
If , then there is only case:
In total, there are ways to choose distinct positive integer values of .
~MathFun1000
Video Solution 1 by Math-X (First understand the problem!!!)
https://youtu.be/oUEa7AjMF2A?si=tkBYOey2NioTPPPq&t=221
~Math-X
Video Solution 2 (CREATIVE THINKING!!!)
~Education, the Study of Everything
Video Solution 3
https://www.youtube.com/watch?v=Ij9pAy6tQSg&t=142
~Interstigation
Video Solution 4
~savannahsolver
Video Solution 5
https://youtu.be/Q0R6dnIO95Y?t=98
~STEMbreezy
Video Solution 6
https://www.youtube.com/watch?v=KkZ95iNlFyc
~harungurcan
Video Solution 7 by Dr. David
See Also
2022 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.