Difference between revisions of "2004 AIME I Problems/Problem 1"
Williamschen (talk | contribs) (→Solution 2) |
Williamschen (talk | contribs) (→Solution 2) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 10: | Line 10: | ||
== Solution 2== | == Solution 2== | ||
− | There are only <math>7 </math> possible values of <math>n | + | There are only <math>7</math> possible values of <math>n</math>: <math>3210, 4321, 5432, \cdots, 9876</math>. |
+ | |||
+ | <math>3210</math> gives a remainder of <math>28</math> when divided by <math>37</math>. To calculate the remainders of the other integers, notice that each number is <math>1111</math> more than the previous number. Since <math>1111</math> gives a remainder of <math>1</math> when divided by <math>37</math>, the remainders of the other integers will be <math>29, 30, 31, \cdots, 34</math>. | ||
+ | |||
+ | Therefore, our answer is <math>28 + 29 + 30 + 31 + 32 + 33 + 34 = \frac{28 + 34}{2} \cdot 7 = \boxed{217}</math>. | ||
~Viliciri | ~Viliciri | ||
Latest revision as of 22:56, 2 December 2024
Contents
Problem
The digits of a positive integer are four consecutive integers in decreasing order when read from left to right. What is the sum of the possible remainders when is divided by ?
Solution 1
A brute-force solution to this question is fairly quick, but we'll try something slightly more clever: our numbers have the form , for .
Now, note that so , and so . So the remainders are all congruent to . However, these numbers are negative for our choices of , so in fact the remainders must equal .
Adding these numbers up, we get
Solution 2
There are only possible values of : .
gives a remainder of when divided by . To calculate the remainders of the other integers, notice that each number is more than the previous number. Since gives a remainder of when divided by , the remainders of the other integers will be .
Therefore, our answer is . ~Viliciri
See also
2004 AIME I (Problems • Answer Key • Resources) | ||
Preceded by First Question |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.