Difference between revisions of "2002 AIME I Problems/Problem 6"

m (See also)
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
The solutions to the system of equations
 
The solutions to the system of equations
 
+
<center><math>\log_{225}x+\log_{64}y=4</math></center>
<cmath>\log_{225}x+\log_{64}y=4</cmath>
+
<center><math>\log_{x}225-\log_{y}64=1</math></center>
 
+
are <math>(x_1,y_1)</math> and <math>(x_2,y_2)</math>. Find <math>\log_{30}\left(x_1y_1x_2y_2\right)</math>.
<cmath>\log_{x}225-\log_{y}64=1</cmath>
 
 
 
are <math>(x_1,y_1)</math> and <math>(x_2,y_2)</math>. Find <math>\log_{30}\left(x_1y_1x_2y_2\right)</math>
 
  
 
== Solution ==
 
== Solution ==

Revision as of 09:18, 20 April 2008

Problem

The solutions to the system of equations

$\log_{225}x+\log_{64}y=4$
$\log_{x}225-\log_{y}64=1$

are $(x_1,y_1)$ and $(x_2,y_2)$. Find $\log_{30}\left(x_1y_1x_2y_2\right)$.

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2002 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions