Difference between revisions of "Cauchy-Schwarz Inequality"
m (organized material) |
m (organized material) |
||
Line 1: | Line 1: | ||
The '''Cauchy-Schwarz Inequality''' (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers <math>a_1,a_2,\ldots,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following [[inequality]] is always true: | The '''Cauchy-Schwarz Inequality''' (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers <math>a_1,a_2,\ldots,a_n</math> and <math>b_1,b_2,\ldots,b_n</math>, the following [[inequality]] is always true: | ||
+ | |||
<math> \displaystyle ({a_1}^2+{a_2}^2+...+{a_n}^2)({b_1}^2+{b_2}^2+...+{b_n}^2)\geq(a_1b_1+a_2b_2+...+a_nb_n)^2</math> | <math> \displaystyle ({a_1}^2+{a_2}^2+...+{a_n}^2)({b_1}^2+{b_2}^2+...+{b_n}^2)\geq(a_1b_1+a_2b_2+...+a_nb_n)^2</math> | ||
+ | |||
Equality holds if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}</math>. | Equality holds if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}</math>. | ||
+ | |||
+ | == Proof == | ||
There are many ways to prove this; one of the more well-known is to consider the equation | There are many ways to prove this; one of the more well-known is to consider the equation | ||
Line 18: | Line 22: | ||
or, in the more compact [[sigma notation]], | or, in the more compact [[sigma notation]], | ||
− | <math>\left(\sum a_ib_i\right)</math> <math>\leq \left(\sum a_i^2\right)\left(\sum b_i^2\right)</math> | + | <math>\left(\sum a_ib_i\right)</math> <math>\leq \left(\sum a_i^2\right)\left(\sum b_i^2\right).</math> |
+ | |||
Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}</math>. | Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if <math>\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}</math>. | ||
This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the [[United States of America Mathematics Olympiad | USAMO]] and [[International Mathematics Olympiad | IMO]]. | This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the [[United States of America Mathematics Olympiad | USAMO]] and [[International Mathematics Olympiad | IMO]]. |
Revision as of 01:33, 18 June 2006
The Cauchy-Schwarz Inequality (which is known by other names, including Cauchy's Inequality) states that, for two sets of real numbers and , the following inequality is always true:
Equality holds if and only if .
Proof
There are many ways to prove this; one of the more well-known is to consider the equation
.
Expanding, we find the equation to be of the form
where , , and . By the Trivial Inequality, we know that the left-hand-side of the original equation is always at least 0, so either both roots are complex numbers, or there is a double root at . Either way, the discriminant of the equation is nonpositive. Taking the discriminant, and substituting the above values of A, B, and C leaves us with the Cauchy-Schwarz Inequality,
or, in the more compact sigma notation,
Note that this also gives us the equality case; equality holds if and only if the discriminant is equal to 0, which is true if and only if the equation has 0 as a double root, which is true if and only if .
This inequality is used very frequently to solve Olympiad-level Inequality problems, such as those on the USAMO and IMO.