Difference between revisions of "2004 AIME I Problems/Problem 7"

(AIME box + style)
(slightly different solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
Let <math> C </math> be the coefficient of <math> x^2 </math> in the expansion of the product <math> (1 - x)(1 + 2x)(1 - 3x)\cdots(1 + 14x)(1 - 15x). </math> Find <math> |C|. </math>
+
Let <math> C </math> be the [[coefficient]] of <math> x^2 </math> in the expansion of the product <math> (1 - x)(1 + 2x)(1 - 3x)\cdots(1 + 14x)(1 - 15x). </math> Find <math> |C|. </math>
  
 +
__TOC__
 
== Solution ==
 
== Solution ==
 +
=== Solution 1 ===
 
Let our [[polynomial]] be <math>P(x)</math>.
 
Let our [[polynomial]] be <math>P(x)</math>.
  
It is clear that the [[coefficient]] of <math>x</math> in <math>P(x)</math> is <math>-1 + 2 - 3 + \ldots + 14 - 15 = -8</math>, so <math>P(x) = 1 -8x + Cx^2 + Q(x)</math>, where <math>Q(x)</math> is some polynomial [[divisibility | divisible]] by <math>x^3</math>.
+
It is clear that the coefficient of <math>x</math> in <math>P(x)</math> is <math>-1 + 2 - 3 + \ldots + 14 - 15 = -8</math>, so <math>P(x) = 1 -8x + Cx^2 + Q(x)</math>, where <math>Q(x)</math> is some polynomial [[divisibility | divisible]] by <math>x^3</math>.
  
 
Then <math>P(-x) = 1 + 8x + Cx^2 + Q(-x)</math> and so <math>P(x)\cdot P(-x) = 1 + (2C - 64)x^2 + R(x)</math>, where <math>R(x)</math> is some polynomial divisible by <math>x^3</math>.
 
Then <math>P(-x) = 1 + 8x + Cx^2 + Q(-x)</math> and so <math>P(x)\cdot P(-x) = 1 + (2C - 64)x^2 + R(x)</math>, where <math>R(x)</math> is some polynomial divisible by <math>x^3</math>.
Line 12: Line 14:
  
 
Equating coefficients, we have <math>2C - 64 = -(1 + 4 + \ldots + 225) = -1240</math>, so <math>-2C = 1176</math> and <math>|C| = \boxed{588}</math>.
 
Equating coefficients, we have <math>2C - 64 = -(1 + 4 + \ldots + 225) = -1240</math>, so <math>-2C = 1176</math> and <math>|C| = \boxed{588}</math>.
 +
 +
=== Solution 2 ===
 +
Let <math>S</math> be the [[set]] of integers <math>\{-1,2,-3,\ldots,14,-15\}</math>. The coefficient of <math>x^2</math> in the expansion is equal to the sum of the product of each pair of distinct terms, or <math>C = \sum_{i \neq j \ge 1}^{15} S_iS_j</math>. Also, we know that
 +
<center><math>(i=1nSi)2=(i=1nSi2)+2(1ij15SiSj)(8)2=15(15+1)(215+1)6+2C</math></center>
 +
where the left-hand sum can be computed from:
 +
<center><math>\sum_{i=1}^{15} S_i = S_{15} + \left(\sum_{i=1}^{7} S_{2i-1} + S_{2i}\right) = -15 + 7 = -8</math></center>
 +
and the right-hand sum comes from the formula for the sum of the first <math>n</math> perfect squares. Therefore, <math>C = \frac{64-1240}{2} = -588</math>.
  
 
== See also ==
 
== See also ==

Revision as of 15:37, 27 April 2008

Problem

Let $C$ be the coefficient of $x^2$ in the expansion of the product $(1 - x)(1 + 2x)(1 - 3x)\cdots(1 + 14x)(1 - 15x).$ Find $|C|.$

Solution

Solution 1

Let our polynomial be $P(x)$.

It is clear that the coefficient of $x$ in $P(x)$ is $-1 + 2 - 3 + \ldots + 14 - 15 = -8$, so $P(x) = 1 -8x + Cx^2 + Q(x)$, where $Q(x)$ is some polynomial divisible by $x^3$.

Then $P(-x) = 1 + 8x + Cx^2 + Q(-x)$ and so $P(x)\cdot P(-x) = 1 + (2C - 64)x^2 + R(x)$, where $R(x)$ is some polynomial divisible by $x^3$.

However, we also know $P(x)\cdot P(-x) = (1 - x)(1 + x)(1 +2x)(1 - 2x) \cdots (1 - 15x)(1 + 15x)$ $= (1 - x^2)(1 - 4x^2)\cdots(1 - 225x^2)$ $= 1 - (1 + 4 + \ldots + 225)x^2 + R(x)$.

Equating coefficients, we have $2C - 64 = -(1 + 4 + \ldots + 225) = -1240$, so $-2C = 1176$ and $|C| = \boxed{588}$.

Solution 2

Let $S$ be the set of integers $\{-1,2,-3,\ldots,14,-15\}$. The coefficient of $x^2$ in the expansion is equal to the sum of the product of each pair of distinct terms, or $C = \sum_{i \neq j \ge 1}^{15} S_iS_j$. Also, we know that

$(i=1nSi)2=(i=1nSi2)+2(1ij15SiSj)(8)2=15(15+1)(215+1)6+2C$ (Error compiling LaTeX. Unknown error_msg)

where the left-hand sum can be computed from:

$\sum_{i=1}^{15} S_i = S_{15} + \left(\sum_{i=1}^{7} S_{2i-1} + S_{2i}\right) = -15 + 7 = -8$

and the right-hand sum comes from the formula for the sum of the first $n$ perfect squares. Therefore, $C = \frac{64-1240}{2} = -588$.

See also

2004 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions