Difference between revisions of "1996 AIME Problems/Problem 11"
(category) |
m |
||
Line 10: | Line 10: | ||
\end{eqnarray*}</cmath> | \end{eqnarray*}</cmath> | ||
− | Thus <math>z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis}\ 72, 144, 216, 288</math>, or <math>z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis}\ 60, 300</math> (see [[cis]]). Discarding the roots with negative imaginary parts (leaving us with <math>\mathrm{cis} \theta,\ 0 < \theta < 180</math>), we are left with <math>\mathrm{cis}\ 60, 72, 144</math>; their product is <math>P = \mathrm{cis} (60 + 72 + 144) = \mathrm{cis} \boxed{276}</math>. | + | Thus <math>z^5 = 1, z \neq 1 \Longrightarrow z = \mathrm{cis}\ 72, 144, 216, 288</math>, |
+ | |||
+ | or <math>z^2 - z + 1 = 0 \Longrightarrow z = \frac{1 \pm \sqrt{-3}}{2} = \mathrm{cis}\ 60, 300</math> | ||
+ | |||
+ | (see [[cis]]). | ||
+ | |||
+ | Discarding the roots with negative imaginary parts (leaving us with <math>\mathrm{cis} \theta,\ 0 < \theta < 180</math>), we are left with <math>\mathrm{cis}\ 60, 72, 144</math>; their product is <math>P = \mathrm{cis} (60 + 72 + 144) = \mathrm{cis} \boxed{276}</math>. | ||
=== Solution 2 === | === Solution 2 === |
Revision as of 16:17, 16 March 2009
Problem
Let be the product of the roots of that have a positive imaginary part, and suppose that , where and . Find .
Solution
Solution 1
Thus ,
or
(see cis).
Discarding the roots with negative imaginary parts (leaving us with ), we are left with ; their product is .
Solution 2
Let the fifth roots of unity, except for . Then , and since both sides have the fifth roots of unity as roots, we have . Long division quickly gives the other factor to be . The solution follows as above.
Solution 3
Divide through by . We get the equation . Let . Then . Our equation is then , with solutions . For , we get . For , we get (using exponential form of ). For , we get . The ones with positive imaginary parts are ones where , so we have .
See also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |