Difference between revisions of "2009 AIME II Problems/Problem 10"
Aimesolver (talk | contribs) (→Solution) |
Aimesolver (talk | contribs) (→Solution) |
||
Line 5: | Line 5: | ||
Let O be the intersection of BC and AD. By the [[Angle Bisector Theorem]], 5/BO = 13/CO, so BO = 5x and CO = 13x, and BO + OC = BC = 12, so x = 2/3, and OC = 26/3. Let P be the altitude from D to OC. It can be seen that triangle DOP is similar to triangle AOB, and triangle DPC is similar to triangle ABC. If DP = 15y, then CP = 36y, OP = 10y, and OD = (5*sqrt(13))*y. Since OP + CP = 46y = 26/3, y = 13/69, and AD = (60*sqrt (13))/23. The answer is 60 + 13 + 23 = 096. | Let O be the intersection of BC and AD. By the [[Angle Bisector Theorem]], 5/BO = 13/CO, so BO = 5x and CO = 13x, and BO + OC = BC = 12, so x = 2/3, and OC = 26/3. Let P be the altitude from D to OC. It can be seen that triangle DOP is similar to triangle AOB, and triangle DPC is similar to triangle ABC. If DP = 15y, then CP = 36y, OP = 10y, and OD = (5*sqrt(13))*y. Since OP + CP = 46y = 26/3, y = 13/69, and AD = (60*sqrt (13))/23. The answer is 60 + 13 + 23 = 096. | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AIME box|year=2009|n=II|num-b=9|num-a=11}} |
Revision as of 17:39, 17 April 2009
Four lighthouses are located at points , , , and . The lighthouse at is kilometers from the lighthouse at , the lighthouse at is kilometers from the lighthouse at , and the lighthouse at is kilometers from the lighthouse at . To an observer at , the angle determined by the lights at and and the angle determined by the lights at and are equal. To an observer at , the angle determined by the lights at and and the angle determined by the lights at and are equal. The number of kilometers from to is given by , where , , and are relatively prime positive integers, and is not divisible by the square of any prime. Find .
Solution
Let O be the intersection of BC and AD. By the Angle Bisector Theorem, 5/BO = 13/CO, so BO = 5x and CO = 13x, and BO + OC = BC = 12, so x = 2/3, and OC = 26/3. Let P be the altitude from D to OC. It can be seen that triangle DOP is similar to triangle AOB, and triangle DPC is similar to triangle ABC. If DP = 15y, then CP = 36y, OP = 10y, and OD = (5*sqrt(13))*y. Since OP + CP = 46y = 26/3, y = 13/69, and AD = (60*sqrt (13))/23. The answer is 60 + 13 + 23 = 096.
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |