Difference between revisions of "2009 AIME II Problems/Problem 13"
Aimesolver (talk | contribs) (→Solution) |
Aimesolver (talk | contribs) (→See Also) |
||
Line 34: | Line 34: | ||
== See Also == | == See Also == | ||
− | {{AIME box|year=2009|n=II|num-b= | + | {{AIME box|year=2009|n=II|num-b=12|num-a=14}} |
Revision as of 21:40, 17 April 2009
Problem
Let and be the endpoints of a semicircular arc of radius . The arc is divided into seven congruent arcs by six equally spaced points , , , . All chords of the form or are drawn. Let be the product of the lengths of these twelve chords. Find the remainder when is divided by .
Solution
Let be the midpoint of and . Assume is closer to instead of . = . Using the Law of Cosines,
= , = , . . . =
So = . It can be rearranged to form
= .
= - , so we have
=
=
=
It can be shown that = , so = = = , so the answer is
See Also
2009 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |