Difference between revisions of "2002 AMC 12A Problems/Problem 23"

(Problem)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
In triangle <math>ABC</math> , side <math>AC</math> and the perpendicular bisector of <math>BC</math> meet in point D, and  bisects <math><ABC. If </math>AD=9<math> and </math>DC=7<math>, what is the area of triangle ABD?  
+
In triangle <math>ABC</math> , side <math>AC</math> and the perpendicular bisector of <math>BC</math> meet in point <math>D</math>, and  bisects <math><ABC</math>. If <math>AD=9</math> and <math>DC=7</math>, what is the area of triangle ABD?  
</math>A) 14<math>  </math>B) 21<math>  </math>C)28<math>  </math>D)14\sqrt5<math>  </math>E)28\sqrt5$
+
<math>A) 14</math>  <math>B) 21</math>  <math>C)28</math>  <math>D)14\sqrt5</math>  <math>E)28\sqrt5</math>
  
 
==Solution==
 
==Solution==

Revision as of 17:53, 17 January 2010

Problem

In triangle $ABC$ , side $AC$ and the perpendicular bisector of $BC$ meet in point $D$, and bisects $<ABC$. If $AD=9$ and $DC=7$, what is the area of triangle ABD? $A) 14$ $B) 21$ $C)28$ $D)14\sqrt5$ $E)28\sqrt5$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last
Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions