Difference between revisions of "2013 AIME I Problems"
(Just added a few aime problems) |
|||
Line 30: | Line 30: | ||
== Problem 4 == | == Problem 4 == | ||
+ | |||
+ | == Problem 5 == | ||
+ | The real root of the equation <math>8x^3-3x^2-3x-1=0</math> can be written in the form <math>\frac{\sqrt[3]{a}+\sqrt[3]{b}+1}{c}</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are positive integers. Find <math>a+b+c</math>. |
Revision as of 20:30, 15 March 2013
2013 AIME I (Answer Key) | AoPS Contest Collections • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |
Contents
[hide]Problem 1
The AIME Triathlon consists of a half-mile swim, a 30-mile bicycle ride, and an eight-mile run. Tom swims, bicycles, and runs at constant rates. He runs fives times as fast as he swims, and he bicycles twice as fast as he runs. Tom completes the AIME Triathlon in four and a quarter hours. How many minutes does he spend bicycling?
Problem 2
Find the number of five-digit positive integers, , that satisfy the following conditions:
-
(a) the number is divisible by
-
(b) the first and last digits of are equal, and
-
(c) the sum of the digits of is divisible by
Problem 3
Let be a square, and let and be points on and respectively. The line through parallel to and the line through parallel to divide into two squares and two nonsquare rectangles. The sum of the areas of the two squares is of the area of square Find
Problem 4
Problem 5
The real root of the equation can be written in the form , where , , and are positive integers. Find .