Difference between revisions of "2013 AIME I Problems/Problem 14"

m (Problem 14)
Line 1: Line 1:
 
== Problem 14 ==
 
== Problem 14 ==
(problem)
+
14. For <math>\pi \le \theta < 2\pi</math>, let
 +
\begin{align*}
 +
P &= \frac12\cos\theta - \frac14\sin 2\theta - \frac18\cos 3\theta + \frac{1}{16}\sin 4\theta + \frac{1}{32} \cos 5\theta - \frac{1}{64} \sin 6\theta \ &\quad - \frac{1}{128} \cos 7\theta + \cdots
 +
\end{align*}
 +
and
 +
\begin{align*}
 +
Q &= 1 - \frac12\sin\theta -\frac14\cos 2\theta + \frac18 \sin 3\theta + \frac{1}{16}\cos 4\theta - \frac{1}{32}\sin 5\theta - \frac{1}{64}\cos 6\theta \
 +
&\quad +\frac{1}{128}\sin 7\theta + \cdots
 +
\end{align*}
 +
so that <math>\frac{P}{Q} = \frac{2\sqrt2}{7}</math>. Then <math>\sin\theta = -\frac{m}{n}</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>.
  
 
== Solution ==
 
== Solution ==

Revision as of 21:45, 16 March 2013

Problem 14

14. For $\pi \le \theta < 2\pi$, let P=12cosθ14sin2θ18cos3θ+116sin4θ+132cos5θ164sin6θ1128cos7θ+ and Q=112sinθ14cos2θ+18sin3θ+116cos4θ132sin5θ164cos6θ+1128sin7θ+ so that $\frac{P}{Q} = \frac{2\sqrt2}{7}$. Then $\sin\theta = -\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Solution

(solution)

See also

2013 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions