Difference between revisions of "1980 AHSME Problems/Problem 6"
Mrdavid445 (talk | contribs) (Created page with "==Problem== A positive number <math>x</math> satisfies the inequality <math>\sqrt{x} < 2x</math> if and only if <math>\text{(A)} \ x > \frac{1}{4} \qquad \text{(B)} \ x > 2 \qqu...") |
Claudiafeng (talk | contribs) |
||
Line 2: | Line 2: | ||
A positive number <math>x</math> satisfies the inequality <math>\sqrt{x} < 2x</math> if and only if | A positive number <math>x</math> satisfies the inequality <math>\sqrt{x} < 2x</math> if and only if | ||
− | <math>\text{(A)} \ x > \frac{1}{4} \qquad \text{(B)} \ x > 2 \qquad \text{(C)} \x > 4 \qquad \text{(D)} \ x < \frac{1}{4}\qquad \text{(E)} \x < 4</math> | + | |
+ | <math>\text{(A)} \ x > \frac{1}{4} \qquad \text{(B)} \ x > 2 \qquad \text{(C)} \ x > 4 \qquad \text{(D)} \ x < \frac{1}{4}\qquad \text{(E)} \ x < 4</math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | <math> \sqrt{x}< 2x \ x < 4x^2 \ 0 < x(4x-1) \ 0 < 4x-1 \ 1 < 4x \ x >\frac{1}{4} \ \boxed{(A)}</math> | ||
+ | |||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1980|num-b=5|num-a=7}} |
Revision as of 19:04, 31 March 2013
Problem
A positive number satisfies the inequality if and only if
Solution
See also
1980 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |